Skip to main content
Log in

Tissue engineering for cutaneous wounds: an overview of current standards and possibilities

Aktueller Stand und Möglichkeiten der Wundbehandlung durch Tissue engineering

  • Main Topic
  • Published:
European Surgery Aims and scope Submit manuscript

Zusammenfassung

GRUNDLAGEN: Die Haut stellt das größte Organ des Menschen dar, wobei sie aus mehreren Schichten aufgebaut ist und den Schichten jeweils spezifische Aufgaben zuzuschreiben sind. Die Haut spielt eine entscheidende Rolle den Körper gegenüber der Umwelt zu schützen. Ein teilweiser Verlust dieser Schutzhülle durch Verletzung oder Krankheit kann zu schwerem physiologischem Ungleichgewicht und schließlich zu wesentlichen körperlichen Einschränkungen oder sogar zum Tod führen. METHODIK: Dieser Artikel dient als Überblick über den derzeitigen Wissenstand zum Thema "Tissue Engineering" bei Wunden. ERGEBNISSE: Die häufigsten Ursachen für schwere Hautschädigungen sind thermale Verletzungen. Andere Ursachen für Schädigungen der Haut sind Verletzungen und chronische Ulzeration infolge Diabetes mellitus, Druckeinwirkung und Venenstauung. Während der letzten drei Jahrzehnte wurden bei der Untersuchung der zellulären und molekularen Prozesse bei der akuten Wundheilung und der Pathobiologie von chronischen Wunden enorme Fortschritte erzielt. SCHLUSSFOLGERUNGEN: Dieser verbesserte Wissensstand führte zu Innovationen bei der Wundbehandlung, die eine raschere Abheilung von chronischen und akuten Wunden ermöglichten bzw. zu einem besseren funktionellen und ästhetischen Ergebnis führten. Der Einsatz von Haut bzw. Hautersatzmaterialien hat die Behandlungsmöglichkeiten für komplizierte Wunden deutlich erhöht.

Summary

BACKGROUND: The skin is the largest organ system in humans, consisting of various distinctive layers, each stratum with a specific purpose. Consequently, our skin incorporates the most essential function, which is to protect our body. Loss of skin integrity because of injury or illness may acutely result in a substantial physiologic imbalance and ultimately in a disability with long-term morbidity or even death. METHODS: This article is an overview of current state-of-the-art concepts and possibilities in the treatment of cutaneous wounds by the use of tissue engineering. RESULTS: The most common cause of significant skin loss is thermal injury. Other causes of skin loss include trauma and chronic ulcerations secondary to diabetes mellitus, pressure, and venous stasis. Over the past three decades, extraordinary advances have been made in our understanding of the cellular and molecular processes involved in acute wound healing and in the pathobiology of chronic wounds. CONCLUSIONS: This knowledge has led to wound care innovations that have facilitated more rapid closure of chronic and acute wounds, better functional and aesthetic outcome. The use of tissue-engineered skin replacements has upgraded the therapeutic possibilities for recalcitrant wounds and for wounds that are not suitable for primary closure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341: 738–746

    Article  PubMed  CAS  Google Scholar 

  • Mustoe T (2004) Understanding chronic wounds: a unifying hypothesis on their pathogenesis and implications for therapy. Am J Surg 187: 65S–70S

    Article  PubMed  CAS  Google Scholar 

  • Clark RAF, An J-Q, Greiling D, Khan AJ, Schwarzbauer J (2003) Fibroblast migration on fibronectin requires 3 distinct functional domains. J Invest Dermatol 121: 695–705

    Article  PubMed  CAS  Google Scholar 

  • Ehrenreich M, Ruszczak Z (2006) Update on tissue-engineered biological dressings. Tissue Eng 12: 1–18

    Article  Google Scholar 

  • Redd MJ, Cooper L, Wood W, Stramer B, Martin P (2004) Wound healing and inflammation: embryos reveal the way to perfect repair. Philos Trans Roy Soc London B 359: 777–784

    Article  CAS  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126: 677–689

    Article  PubMed  CAS  Google Scholar 

  • Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7: 265–275

    Article  PubMed  CAS  Google Scholar 

  • Clark RAF, Gosh K, Tonnesen MG (2007) Tissue engineering for cutaneous wounds. J Invest Dermatol 127: 1018–1029

    Article  PubMed  CAS  Google Scholar 

  • O'Conner NE, Mulliken JB, Banks-Schlegel S, Kehinde O, Green H (1981) Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet 1: 75–78

    Article  Google Scholar 

  • Rab M, Koller R, Ruzicka M, Burda G, Kamolz LP, Bierochs B, Meissl G, Frey M (2005) Should dermal scald burns in children be covered with autologous skin grafts or with allogeneic cultivated keratinocytes? – "The Viennese concept". Burns 31: 578–586

    Article  PubMed  Google Scholar 

  • Kamolz LP, Kitzinger HB, Andel H, Frey M (2007) The surgical treatment of acute burns. Eur Surg 38: 417–423

    Article  Google Scholar 

  • Kamolz LP, Luegmair M, Wick N, Eisenbock B, Burjak S, Koller R, Meissl G, Frey M (2005) The Viennese culture method: cultured human epithelium obtained on a dermal matrix based on fibroblast containing fibrin glue gels. Burns 31: 25–29

    Article  PubMed  CAS  Google Scholar 

  • Koller R, Bierochs B, Meissl G, Rab M, Frey M (2002) The use of allogeneic cultivated keratinocytes for the early coverage of deep dermal burns – indications, results and problems. Cell Tissue Bank 3: 11–14

    Article  PubMed  Google Scholar 

  • Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6: 331–344

    Article  PubMed  CAS  Google Scholar 

  • Green H, Kehinde O, Thomas J (1979) Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc Natl Acad Sci USA 76: 5665–5668

    Article  PubMed  CAS  Google Scholar 

  • Gallico GG III, O'Connor NE, Compton CC, Kehinde O, Green H (1984) Permanent coverage of large burn wounds with autologous cultured human epithelium. N Engl J Med 311: 448–451

    Article  PubMed  Google Scholar 

  • Munster AM (1996) Cultured skin for massive burns. A prospesctive, controlled trial. Ann Surg 224: 372–377

    Article  PubMed  CAS  Google Scholar 

  • Thivolet J, Faure M, Demidem A, Mauduit G (1986) Long term survival and immunological tolerance of human epidermal allografts produced in culture. Transplantation 42: 274–280

    Article  PubMed  CAS  Google Scholar 

  • Leigh IM, Purkis PE, Navasaria HA, Phillips TJ (1987) Treatment of chronic venous ulcers with sheets of cultured allogeneic keratinocytes. Br J Dermatol 117: 591–597

    Article  PubMed  CAS  Google Scholar 

  • Teepe RGC, Koebrugge EJ, Ponec M, Vermeer BJ (1990) Fresh versus cryopreserved cultured allografts for the treatment of chronic skin ulcers. Br J Dermatol 122: 81–89

    Article  PubMed  CAS  Google Scholar 

  • Williamson JS, Snelling CF, Clugston P, Macdonald IB, Germann E (1995) Cultured epithelial autograft: five years of clinical experience with twenty-eight patients. J Trauma 39: 309–319

    Article  PubMed  CAS  Google Scholar 

  • Campoccia D, Doherty P, Radice M, Brun P, Abatangelo G, Williams DF (1998) Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials 19(23): 2101–2127

    Article  PubMed  CAS  Google Scholar 

  • Rajab TK, Wallwiener C, Wallwiener M, Kraemer B (2007) Cost analysis of Jelonet (R) versus Suprathel (R) in the management of split-thickness skin graft donor sites. Burns Oct 3; PMID: 17919822 [Epub ahead of print]

  • Schwarze H, Kuntscher M, Uhlig C, Hierlemann H, Prantl L, Noack N, Hartmann B (2007) Suprathel(R), a new skin substitute, in the management of donor sites of split-thickness skin grafts: results of a clinical study. Burns 33: 850–854

    Article  PubMed  CAS  Google Scholar 

  • Uhlig C, Rapp M, Hartmann B, Hierlemann H, Planck H, Dittel KK (2007) Suprathel – an innovative, resorbable skin substitute for the treatment of burn victims. Burns 33: 221–229

    Article  PubMed  CAS  Google Scholar 

  • Cuono C, Langdon R, McGuire J (1986) Use of cultured epidermal autografts and dermal allografts as skin replacement after burn injury. Lancet 1: 1123–1124

    Article  PubMed  CAS  Google Scholar 

  • Burke JF, Yannas IV, Quinby WC Jr, Bondoc CC, Jung WK (1981) Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg 194: 413–428

    Article  PubMed  CAS  Google Scholar 

  • Heimbach D, Luterman A, Burke J, Cram A, Herndon D, Hunt J, Jordan M, McManus W, Solem L, Warden G, et al (1988) Artificial dermis for major burns: a multicenter randomized clinical trial. Ann Surg 208: 313–320

    Article  PubMed  CAS  Google Scholar 

  • Purdue GF (1997) Dermagraft-TC pivotal safety and efficacy study. J Burn Care Rehabil 18: S13–S14

    Article  PubMed  CAS  Google Scholar 

  • Gentzkow GD, Iwasaki SD, Hershon KS, Mengel M, Prendergast JJ, Ricotta JJ, Steed DP, Lipkin S (1996) Use of dermagraft: a cultured human dermis to treat diabetic foot ulcers. Diabetes Care 19: 350–354

    Article  PubMed  CAS  Google Scholar 

  • Marston WA, Hanft J, Norwood P, Pollak R (2003) The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial. Diabetes Care 26: 1701–1705

    Article  PubMed  Google Scholar 

  • Mostow EN, Haraway GD, Dalsing M, Hodde JP, King D (2005) Effectiveness of an extracellular matrix graft (OASIS Wound Matrix) in the treatment of chronic leg ulcers: a randomized clinical trial. J Vasc Surg 41: 837–843

    Article  PubMed  Google Scholar 

  • Haslik W, Kamolz LP, Nathschlager G, Andel H, Meissl G, Frey M (2007) First experiences with the collagen-elastin matrix Matriderm as a dermal substitute in severe burn injuries of the hand. Burns 33: 364–368

    Article  PubMed  CAS  Google Scholar 

  • Ryssel H, Gazyakan E, Germann G, Ohlbauer M (2007) The use of Matriderm (R) in early excision and simultaneous autologous skin grafting in burns – a pilot study. Burns Jul 16, PMID: 17644263 [Epub ahead of print]

    Google Scholar 

  • Eaglstein WH, Alvarez OM, Auletta M, Leffel D, Rogers GS, Zitelli JA, Norris JE, Thomas I, Irondo M, Fewkes J, Hardin-Young J, Duff RG, Sabolinski ML (1999) Acute excisional wounds treated with a tissue engineered skin (Apligraf). Dermatol Surg 25: 195–201

    Article  PubMed  CAS  Google Scholar 

  • Falanga V, Margolis D, Alvarez O, Auletta M, Maggiacomo F, Altman M, Jensen J, Sabolinski M, Hardin-Young J (1998) Rapid healing of venous ulcers and lack of clinical rejection with an allogeneic cultured human skin equivalent. Human Skin Equivalent Investigators Group [see comments]. Arch Dermatol 134: 293–300

    Article  PubMed  CAS  Google Scholar 

  • Still J, Glat P, Silverstein P, Griswold J, Mozingo D (2003) The use of a collagen sponge/living cell composite material to treat donor sites in burn patients. Burns 29: 837–841

    Article  PubMed  Google Scholar 

  • Balasubramani M, Kumar TR, Babu M (2001) Skin substitutes: a review. Burns 27: 534–544

    Article  PubMed  CAS  Google Scholar 

  • Welch MP, Odland GF, Clark RAF (1990) Temporal relationships of F-actin bundle formation, collagen and fibronectin matrix assembly, and fibronectin receptor expression to wound contraction. J Cell Biol 110: 133–145

    Article  PubMed  CAS  Google Scholar 

  • Mosesson MW (2005) Fibrinogen and fibrin structure and functions. J Thromb Haemost 3: 1894–1904

    Article  PubMed  CAS  Google Scholar 

  • Richardson TP, Peters MC, Ennett AB, Mooney DJ (2001) Polymeric system for dual growth factor delivery. Nat Biotechnol 19: 1029–1034

    Article  PubMed  CAS  Google Scholar 

  • McClain SA, Simon M, Jones E, Nandi A, Gailit JO, Tonnesen MG, Newman D, Clark RA (1996) Mesenchymal cell activation is the rate limiting step of granulation tissue induction. Am J Pathol 149: 1257–1270

    PubMed  CAS  Google Scholar 

  • Sahni A, Sahni SK, Simpson-Haidaris PJ, Francis CW (2004) Fibrinogen binding potentiates FGF-2 but not VEGF induced expression of u-PA, u-PAR, and PAI-1 in endothelial cells. J Thromb Haemost 2: 1629–1636

    Article  PubMed  CAS  Google Scholar 

  • Klagsbrun M (1990) The affinity of fibroblast growth factors (FGFs) for heparin; FGF heparin sulfate interactions in cells and extracellular matrix. Curr Opin Cell Biol 2: 857–863

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Kamolz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamolz, L., Lumenta, D., Kitzinger, H. et al. Tissue engineering for cutaneous wounds: an overview of current standards and possibilities. Eur Surg 40, 19–26 (2008). https://doi.org/10.1007/s10353-008-0380-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10353-008-0380-6

Schlüsselwörter

Keywords

Navigation