Skip to main content

Advertisement

Log in

New paleobiogeographical and paleoenvironmental insight through the Tortonian brachiopod and ichnofauna assemblages from the Mediterranean-Atlantic seaway (Guadix Basin, SE Spain)

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

The paleogeography of the Late Neogene Atlantic-Mediterranean seaway via the Betic-Rifean Domain is quite complex due to the presence of several marine corridors. The study of transitional basins in these seaways is crucial to understand the configuration and evolution of the Mediterranean-Atlantic inter-connection. A mixed skeletal-siliciclastic sandstone succession located in one of these transitional areas (Guadix Basin, Southern Spain) was studied from a comprehensive paleontological standpoint focused on the main benthic assemblages (foraminifera, brachiopods, and trace fossils), integrating the data with the study of planktic foraminifera for an accurate biostratigraphic framework. Brachiopods are mostly represented by the Aphelesia-Gryphus assemblage. Two trace fossil assemblages were observed, dominated by Ophiomorpha with Bichordites (1) and Macaronichnus (2), respectively. The benthic foraminiferal assemblage is mostly represented by Planulina and Cibicides. The data gathered from the benthic communities reveal habitats with high-energy and turbulent conditions in an outer neritic-upper bathyal bathymetric range. Brachiopods from the Alicún section show a Mediterranean paleobiogeographic affinity. They were constrained in the Late Tortonian to the restricted basins of the Betic-Rifean Seaway and after the Messinian Salinity Crisis proliferated in both Mediterranean- and Atlantic-type basins of the Betic-Rifean Domain. The Guadix Basin contributed to the Mediterranean-Atlantic faunal inter-connection through the Betic-Rifean Seaway during the Late Tortonian and facilitated the earliest Pliocene expansion of brachiopods in the Mediterranean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ager DV (1963) Principles of paleoecology. McGraw-Hill, New York, p 371

    Google Scholar 

  • Ager DV (1965) The adaptation of Mesozoic brachiopods to different environments. Palaeogeogr Palaeoclimatol Palaeoecol 1:143–172

    Google Scholar 

  • Ager DV (1967) Some mesozoic brachiopods in the tethys region. In: Adams CG, Ager DV (eds) Aspects of Tethyan Biogeography. Systematics Association Publication 7, pp 135–151

  • Ager DV (1968) Brachiopod palaeoecology. Earth Sci Rev 3:157–179

    Google Scholar 

  • Aguirre J, de Gibert JM, Puga-Bernabéu A (2010) Proximal–distal ichnofabric changes in a siliciclastic shelf, Early Pliocene, Guadalquivir Basin, southwest Spain. Palaeogeogr Palaeoclimatol Palaeoecol 291:328–337

    Google Scholar 

  • Alexander RR (1999) Function of external skeletal characteristics of articulate brachiopods. In: Savazzi E (ed) Functional morphology of the invertebrate skeleton. Wiley, New York, pp 371–398

    Google Scholar 

  • Álvarez F, Emig CC (2005) Brachiopoda. In: Álvarez F, Emig CC, Roldán C, Viéitez JM (eds) Lophophorata, Phoronida, Brachiopoda. In: Ramos MA (ed) Fauna Ibérica 27, Museo Nacional de Ciencias Naturales, CSIC, Madrid, pp. 57–177

  • Baeza-Carratalá JF, Manceñido MO, García Joral F (2016a) Cisnerospira (Brachiopoda, Spiriferinida), an atypical Early Jurassic spire bearer from the Subbetic Zone (SE Spain) and its significance. J Paleontol 90(6):1081–1099

    Google Scholar 

  • Baeza-Carratalá JF, García Joral F, Tent-Manclús JE (2016b) Lower Jurassic brachiopods from the Ibero-Levantine Sector (Iberian Range): faunal turnovers and critical bioevents. J Iberian Geol 42(3):355–369

    Google Scholar 

  • Bernardi M, Boschele S, Ferretti P, Avanzini M (2010) Echinoid burrow Bichordites monastiriensis from the Oligocene of NE Italy. Acta Palaeontol Pol 55:479–486

    Google Scholar 

  • Bertolaso L, Borghi E, García Ramos D (2009) Brachiopodi Neogenici e Pleistocenici dell’Emilia (Parte seconda). Parva Naturalia 8:3–42

    Google Scholar 

  • Bertrand M, Kilian W (1889) Études sur les terrains secondaires et tertiaires dans les provinces de Grenada et de Malaga: Mémoires de l’Académie des Sciences de Paris 30(2):377–579

    Google Scholar 

  • Betzler C, Braga JC, Martín JM, Sánchez-Almazo IM, Lindhorst S (2006) Closure of a seaway: stratigraphic record and facies (Guadix basin, Southern Spain). Int J Earth Sci 95(5):903–910

    Google Scholar 

  • Bitner MA, Dulai A (2004) Revision of Miocene brachiopods of the Hungarian Natural History Museum, with special regard to the Meznerics collection. Fragmenta Palaeontologica Hungarica 22:69–82

    Google Scholar 

  • Bitner MA, Martinell J (2001) Pliocene brachiopods from the Estepona area (Málaga, South Spain). Revista Española de Paleontología 16(2):9–17

    Google Scholar 

  • Bitner MA, Moissette P (2003) Pliocene brachiopods from north-western Africa. Geodiversitas 25(3):463–479

    Google Scholar 

  • Bitner MA, Schneider S (2009) The Upper Burdigalian (Ottnangian) brachiopod fauna from the northern coast of the Upper Marine Molasse Sea in Bavaria, Southern Germany. Neues Jb Geol Paläontol Abh 254:117–133

    Google Scholar 

  • Bitner MA, Dulai A, Galácz A (2011) Middle Eocene brachiopods from the Szőc Limestone Formation (Bakony Mountains, Hungary), with description of a new genus. Neues Jb Geol Paläontol Abh 259:113–128

    Google Scholar 

  • Bitner MA, Zágoršek K, Halásová E, Hudáčková N, Jamrich M (2014) Brachiopods and bryozoans from the Sandberg section (Vienna Basin, Central Paratethys) and their significance for environmental interpretation of the Early Sarmatian (= Middle Miocene) Sea. Neues Jb Geol Paläontol Abh 273:207–219

    Google Scholar 

  • Borghi E (2001) Osservazioni sui Brachiopodi neogenici e pleistocenici dell’Emilia. Parva Naturalia 2001:45–81

    Google Scholar 

  • Braga JC, Martín JM, Quesada C (2003) Patterns and average rates of late Neogene—recent uplift of the Betic Cordillera, SE Spain. Geomorphology 50:3–26

    Google Scholar 

  • Brocchi GB (1814) Conchiglia fossile subappennina con osservazioni geologiche sugli Appennini e sul suolo adiacente. Milano, 712 p

  • Bromley RG (1996) Trace fossils—biology, taphonomy and applications. Chapman & Hall, London, p 361

    Google Scholar 

  • Bromley RG, Milàn J, Uchman A, Hansen KS (2009) Rheotactic Macaronichnus, and human and cattle trackways in Holocene beachrock, Greece: reconstruction of paleoshoreline orientation. Ichnos 16:103–117

    Google Scholar 

  • Brunton CHC, Curry GB (1979) British brachiopods. Synop Br Fauna (New Series) 17:1–64

    Google Scholar 

  • Buatois LA, Mángano MG (2011) The ichnofacies model. In: Ichnology. Organism-substrate interactions in space and time. Cambridge University Press, pp 58–82

  • Caruso C, Monaco P (2015) Bichordites monastiriensis ichnofabric from the Pleistocene shallow-marine sandstones at Le Castella (Crotone), Ionian Calabria, Southern Italy. Riv Ital Paleontol Stratigr 121:381–397

    Google Scholar 

  • Clifton HE, Thompson JK (1978) Macaronichnus segregatis: a feeding structure of shallow marine polychaetes. J Sediment Petrol 48:1293–1302

    Google Scholar 

  • Colás J, García Joral F (2012) Morphology and environment in the Jurassic Nucleatidae (Brachiopoda) from Western Tethys. Lethaia 45(2):178–190

    Google Scholar 

  • Colella A, D’Alessandro A (1988) Sand waves, Echinocardium traces and their bathyal depositional setting (Monte Torre Palaeostrait, Plio-Pleistocene, southern Italy. Sedimentology 35:219–237

    Google Scholar 

  • Cooper GA (1959) Genera of tertiary and recent rhynchonelloid brachiopods. Smithson Misc Collect 139(5):1–90

    Google Scholar 

  • Cooper GA (1981) Brachiopoda from the Gulf of Gascogne, France (Recent). Smithson Contrib Paleobiol 44:1–35

    Google Scholar 

  • Corbí H, Soria JM, García-García F, Lancis C, Pina JA, Tent-Manclús JE (2012) Updating the marine biostratigraphy of the Granada Basin (central Betic Cordillera). Insight for the Late Miocene palaeogeographic evolution of the Atlantic-Mediterranean seaway. Geobios 45:249–263

    Google Scholar 

  • D’Alessandro A, Uchman A (2007) Bichordites and Bichordites-Rosselia ichnoassemblages from the lower Pleistocene Tursi sandstone (Southern Italy). SEPM Spec Publ 88:213–221

    Google Scholar 

  • Davidson T (1870) On Italian Tertiary Brachiopoda. Geological Magazine 7(8–10): 359–370, 399–408, 460–466

  • de Gibert JM, Goldring R (2007) An ichnofabric approach to the depositional interpretation of the intensely burrowed Bateig Limestone, Miocene, SE Spain. Sediment Geol 194:1–16

    Google Scholar 

  • de Gibert JM, Goldring R (2008) Spatangoid-produced ichnofabrics (Bateig Limestone, Miocene, Spain) and the preservation of spatangoid trace fossils. Palaeogeogr Palaeoclimatol Palaeoecol 270:299–310

    Google Scholar 

  • Demírcan H, Uchman A (2012) The miniature echinoid trace fossil Bichordites kuzunensis isp. nov. from early Oligocene prodelta sediments of the Mezardere Formation, Gökçeada Island, NW Turkey. Acta Geol Pol 62:205–215

    Google Scholar 

  • Dulai A (2003) Taxonomic composition of Mediterranean Early Jurassic brachiopod faunas from Hungary: niche replacement and depth control. Fragmenta Paleontologica Hungarica 21:43–50

    Google Scholar 

  • Dulai A (2010) Palaeogene brachiopods from the Late Eocene of Austria and the Oligocene of Hungary. In: Shi GR, Percival IG, Pierson RR, Weldon EA (eds) Program and Abstracts, 6th International Brachiopod Congress Melbourne, Australia. Geological Society of Australia Abstracts 95: 38–39

  • Dulai A (2013) Sporadic Miocene brachiopods in the Naturalis Biodiversity Center (Leiden, the Netherlands): records from the Mediterranean, the North Sea, and the Atlantic Ocean. Fragmenta Palaeontologica Hungarica 30:15–51

    Google Scholar 

  • Dulai A (2015) Central Paratethyan Middle Miocene brachiopods from Poland, Hungary and Romania in the Naturalis Biodiversity Center (Leiden, the Netherlands). Scripta Geol 149:185–211

    Google Scholar 

  • Dulai A (2016) Sporadic Pliocene and Pleistocene brachiopods in Naturalis Biodiversity Center (Leiden, the Netherlands): records from the Mediterranean, and the North Sea Basin. Fragmenta Palaeontologica Hungarica 33:65–98

    Google Scholar 

  • Dulai A, Mulder H. Pliocene brachiopods from Estepona (Spain) (in preparation)

  • Dulai A, Hradecká L, Konzalová M, Gy Less, Švábenická L, Lobitzer H (2010) An Early Eocene fauna and Flora from “Rote Kirche” in Gschliefgraben near Gmunden, Upper Austria. Abhandlungen der Geologischen Bundesanstalt 65:181–210

    Google Scholar 

  • Dulai A, Gatt M, Moissette P, Janssen AW (2015) Oligocene and Miocene brachiopods of the Maltese Islands: taxonomy, diversity, distribution. In: Huang B, Shen S (eds) The Brachiopod World. Abstracts for IBC7. Permophiles 61(1): 26–28

  • Ekdale AA (1985) Paleoecology of the marine endobenthos. Palaeogeogr Palaeoclimatol Palaeoecol 50:63–81

    Google Scholar 

  • Ekdale A, Bromley RG, Knaust D (2012) The ichnofabric concept. In Knaust D, Bromley R (eds) Trace Fossils as Indicators of Sedimentary Environments. Elsevier, Developments in Sedimentology Series 64, pp 139–155

  • Emig CC (1985) Distribution et synécologie des fonds à Gryphus vitreus (Brachiopoda) en Corse. Mar Biol 90(1):139–146

    Google Scholar 

  • Emig CC (1987) Offshore brachiopods investigated by submersible. J Exp Mar Biol Ecol 108:261–273

    Google Scholar 

  • Emig CC (1989a) Observations préliminaires sur l’envasement de la biocoenose à Gryphus vitreus (Brachiopoda), sur la pente continentale du Nord de la Corse (Méditerranée). Origines et conséquences. C.R. Acad. Sci. Paris 309, Série III: 337–342

  • Emig CC (1989b) Distributional patterns along the Mediterranean continental margin (Upper Bathyal) using Gryphus vitreus (Brachiopoda) densities. Palaeogeogr Palaeoclimatol Palaeoecol 71:253–256

    Google Scholar 

  • Emig CC (1997) Ecology of the inarticulated brachiopods. In: Kaesler, RL (ed) Treatise on Invertebrate Paleontology, Part H. Brachiopoda revised. Geological Society of America and University of Kansas, Boulder, Colorado and Lawrence, Kansas 1, pp 473–495

  • Enderlein P (2004) Effect of substrate composition on burrowing depth and respiratory current in two spatangoids (Echinoidea). Sarsia 89(3):190–195

    Google Scholar 

  • Esteban M, Braga JC, Martín JM, Santisteban C (1996) Western Mediterranean Reef Complexes. In: Franseen EK, Esteban M, Ward WC, Rouchy JM (eds) Models for Carbonate Stratigraphy from Miocene Reef Complexes of Mediterranean Regions. Soc. Econ. Paleontol. Mineral, Concepts in Sedimentology and Paleontology 5, pp 55–72

  • Fürsich FT, Hurst JM (1974) Environmental factors determining the distribution of brachiopods. Palaeontology 17(4):879–900

    Google Scholar 

  • Gaetani M (1986) Brachiopod palaeocommunities from the Plio/Pleistocene of Calabria and Sicilia (Italy). In: Racheboeuf PR, Emig C (eds) Les Brachiopodes fossiles et actuels. Biostratigraphie du Paléozoique 4: 281–288

  • Gaetani M, Saccà D (1985a) Il genere Aphelesia (Rhynchonellida, Brachiopoda) nel Mio-Pliocene italiano. Riv Ital Paleontol Stratigr 91(3):357–378

    Google Scholar 

  • Gaetani M, Saccà D (1985b) Brachiopodi neogenici e pleistocenici della provincia di Messina e della Calabria meridionale. Geol Romana 22:1–43

    Google Scholar 

  • García Joral F, Goy A, Ureta S (1990) Las sucesiones de braquiópodos en el tránsito Lías-Dogger en la Cordillera Ibérica. Cuad Geol Ibérica 14:55–65

    Google Scholar 

  • García-Ramos D (2004) Braquiópodos pliocenos de Águilas. Boletín de la Asociación Cultural Paleontológica Murciana 3:18–39

    Google Scholar 

  • García-Ramos D (2005) Notes on some Neogene Brachiopods from south-eastern Spain. Cidaris 21–22:25–36

    Google Scholar 

  • García-Ramos D (2006) Nota sobre Terebratulinae del Terciario de Europa y su relación con los representantes neógenos del sureste español. Boletín de la Asociación Cultural Paleontológica Murciana 5:23–83

    Google Scholar 

  • García-Ramos D (2015) Taphonomy of a thick Terebratula bioherm from the Pliocene of southestern Spain. Geophysical Research Abstracts 17: EGU2015-13462-1

  • Giannetti A, Monaco P (2015) Definition of sequences through ichnocoenoses and taphofacies: an example from the Sácaras Formation (early Cretaceous, eastern Spain). Palaeogeogr Palaeoclimatol Palaeoecol 438:70–80

    Google Scholar 

  • Giannetti A, Falces-Delgado S, Monaco P (2018) Characterization of the Ophiomorpha rudis 3D boxwork in a turbiditic succession (Oligocene of the Alicante Province, southeastern Spain). Journal of Iberian Geology 43:631–642

    Google Scholar 

  • MacEachern JA, Bann KL, Gingras, MK, Zonneveld J-P, Dashtgard SE, Pemberton SG (2012a) The ichnofacies paradigm. In Knaust D, Bromley R (eds) Trace Fossils as Indicators of Sedimentary Environments. Elsevier, Developments in Sedimentology Series 64, pp 103–138

  • Gingras MK, MacMillan B, Balcom BJ, Saunders T, Pemberton SG (2002) Using magnetic resonance imaging and petrographic techniques to understand the textural attributes and porosity distribution in Macaronichnus-burrowed sandstone. J Sediment Res 72:552–558

    Google Scholar 

  • Hsü KJ, Montadert L, Bernoulli D, Cita MB, Erickson A, Garrison RE, Kidd RB, Melières F, Müller C, Wright R (1977) History of the Mediterranean salinity crisis. Nature 267:399–403

    Google Scholar 

  • Hüsing SK, Kuiper KF, Link W, Hilgen FJ, Krijgsman W (2009) The upper Tortonian-lower Messinian at Monte dei Corvi (Northern Apennines, Italy): completing a Mediterranean reference section for the Tortonian Stage. Earth Planet Sci Lett 282:140–157

    Google Scholar 

  • Hüsing SK, Oms O, Agustí J, Garcés M, Kouwenhoven TJ, Krijgsman W, Zachariasse WJ (2010) On the late Miocene closure of the Mediterranean-Atlantic gateway through the Guadix basin (southern Spain). Palaeogeogr Palaeoclimatol Palaeoecol 291:167–179

    Google Scholar 

  • Hüsing SK, Oms O, Agustí J, Garcés M, Kouwenhoven TJ, Krijgsman W, Zachariasse WJ (2012) On the Late Miocene continentalization of the Guadix Basin: more evidence for a major Messinian hiatus. Geobios 45:617–620

    Google Scholar 

  • Iaccarino S, Premoli Silva I (2007) Practical manual of Neogene planktonic foraminifera. Università degli Studi di Perugia, Perugia, International School on Planktonic Foraminifera, p 140

    Google Scholar 

  • Jumars PA, Dorgan KM, Mayer LM, Boudreau BP, Johnson BD (2007) Material constraints on infaunal lifestyles: may the persistent and strong forces be with you. In: Miller IIIW (ed) Trace fossils: concepts, problems and prospects. Elsevier, Amsterdam, pp 442–457

    Google Scholar 

  • Kaesler RL, Selden PA (eds) (1997–2007) Treatise on Invertebrate Paleontology. Part H, Brachiopoda, Revised, Vols. 1–6. Geological Society of America and Paleontological Institute, Boulder, Colorado and Lawrence, Kansas

  • Kashenko SD (2006) Resistance of the Heart Sea Urchin Echinocardium cordatum (Echinoidea: Spatangoida) to Extreme Environmental Changes. Russ J Mar Biol 6:386–388

    Google Scholar 

  • Knaust D (2017) Atlas of Trace Fossils in Well Core. Appearance, Taxonomy and Interpretation. Springer, Berlin

    Google Scholar 

  • Kocsis L, Dulai A, Bitner MA, Vennemann T, Cooper M (2012) Geochemical composition of Neogene phosphatic brachiopods: implication for ancient environmental and marine conditions. Palaeogeogr Palaeoclimatol Palaeoecol 326–328:66–77

    Google Scholar 

  • Lee DE (2008) The terebratulides: the supreme brachiopod survivors. Fossils Strata 54:241–249

    Google Scholar 

  • Lee DE, Brunton CHC, Taddei Ruggiero E, Caldara M, Simone O (2001) The Cenozoic brachiopod Terebratula: its type species, neotype, and other included species. Bull Nat History Museum, Geol Ser 57:83–93

    Google Scholar 

  • Llompart C, Calzada S (1982) Braquiópodos Messinienses de la Isla de Menorca. Boletín de la Real Sociedad Española de Historia Natural, Sección Geológica 80:185–206

    Google Scholar 

  • Logan A (2007) Geographic distribution of extant articulated brachiopods. In: Selden PA (ed) Treatise on Invertebrate Paleontology, Part H (Revised) Brachiopoda, 6 (sup.): 3082–3115. The Geological Society of America and the University of Kansas, Boulder, Colorado and Lawrence, Kansas

  • Logan A, Bianchi CN, Morri C, Zibrowius H (2004) The present-day Mediterranean brachiopod fauna: diversity, life habits, biogeography and paleobiogeography. In: Ros JD, Packard TT, Gili JM, Pretus JL, Blasco D (eds) Biological oceanography at the turn of the Millenium. Scientia Marina 68 (Sup. 1), pp 163–170

  • MacEachern JA, Dashtgard SE, Knaust D, Catuneanu O, Bann KL, Pemberton SG (2012b) Sequence Stratigraphy. In Knaust D, Bromley R (eds) Trace Fossils as Indicators of Sedimentary Environments. Elsevier, Developments in Sedimentology Series 64, pp 157–194

  • Manceñido MO, Gourvennec R (2008) A reappraisal of feeding current systems inferred for spire-bearing brachiopods. Earth Environ Sci Trans R Soc Edinburgh 98:345–356

    Google Scholar 

  • Manceñido MO, Owen EF (2002) Family Basiliolidae Cooper, 1959. In: Treatise on Invertebrate Paleontology. Part H. Brachiopoda. Revised. Vol. 4: Rhynchonelliformea (part). Geological Society of America and University of Kansas, pp 11993–1214

  • Mángano MG, Buatois L (2007) Trace fossils in evolutionary paleoecology. In: Miller W III (ed) Trace fossils, concepts, problems, perspectives. Elsevier, Amsterdam, pp 391–409

    Google Scholar 

  • Meulenkamp JE, Sissingh W (2003) Tertiary palaeogeography and tectonostratigraphic evolution of the Northern and Southern Peri-Tethys platforms and the intermediate domains of the African-Eurasian convergent plate boundary zone. Palaeogeogr Palaeoclimatol Palaeoecol 196:209–228

    Google Scholar 

  • Meznerics I (1944) Die Brachiopoden des ungarischen Tertiärs. Annales historico-naturales Musei nationalis hungarici 36:10–60

    Google Scholar 

  • Michelotti G (1847) Description des fossiles des terrains miocenes del’Italie septentrionale. Natuurkundige Verhandelingen van de Hollandsche Maatschappij der Wetenschappen 2, 3, 408

  • Monaco P, Giannetti A (2002) Three-dimensional burrow systems and taphofacies in shallowing-upward parasequences, Lower Jurassic carbonate platform (Calcari Grigi, Southern Alps, Italy). Facies 47:57–82

    Google Scholar 

  • Monaco P, Giannetti A, Caracuel JE, Yébenes A (2005) Lower Cretaceous (Albian) shell-armoured and associated echinoid trace fossils from the Sácaras Formation, Serra Gelada area, southeast Spain. Lethaia 38:1–13

    Google Scholar 

  • Nagy J, Rodríguez Tovar F, Reolid M (2016) Environmental significance of Ophiomorpha in a transgressive–regressive sequence of the Spitsbergen Paleocene. Polar Res 35(1):24192. https://doi.org/10.3402/polar.v35.24192

    Google Scholar 

  • Nara M (2014) The Bichordites ichnofabric in the Pleistocene ocean current-generated sand ridge complex. Spanish J Palaeontol 29:191–202

    Google Scholar 

  • Pajaud D (1976) Les Brachiopodes du Pliocène I de la Sierra de Santa Pola (sud d’Alicante, Espagne): Terebratula terebratula (Linné, 1758) et Phapsirhynchia sanctapaulensis nov. gen., nov. sp. Annales de la Société géologique du Nord 96:99–106

    Google Scholar 

  • Pajaud D (1977) Les Brachiopodes du Pliocène I de la région d’Aguilas (sud d’Almeria, Espagne). Annales de Paléontologie (Invertebrés) 63(1):59–75

    Google Scholar 

  • Pedley HM (1976) A palaeoecological study of the Upper Coralline Limestone, Terebratula-Aphelesia Bed (Miocene, Malta) based on bryozoan growth-form studies and brachiopod distributions. Palaeogeogr Palaeoclimatol Palaeoecol 20:209–234

    Google Scholar 

  • Pemberton SG, Spila M, Pulham AJ, Saunders T, MacEachern JA, Robbins J, Sinclair IK (2001) Ichnology and sedimentology of shallow marginal marine systems. Geological Association of Canada. Short Course Notes 15. St John’s, 343

  • Phillips C, McIlroy D, Elliott T (2011) Ichnological characterization of Eocene/Oligocene turbidites from the Grès d’Annot Basin, French Alps, SE France. Palaeogeogr Palaeoclimatol Palaeoecol 300:67–83

    Google Scholar 

  • Quiroz LI, Buatois LA, Mángano MG, Jaramillo CA, Santiago N (2010) Is the trace fossil Macaronichnus segregatis an indicator of temperate to cold waters? Exploring the paradox of its occurrence in tropical coasts. Geology 38:651–654

    Google Scholar 

  • Rajchel J, Uchman A (2012) Ichnology of Upper Cretaceous deep-sea thick-bedded flysch sandstones: lower Istebna Beds, Silesian Unit (Outer Carpathians, southern Poland). Geol Carpath 63:107–120

    Google Scholar 

  • Reolid M, García-García F, Tomašových A, Soria JM (2012) Thick brachiopod shell concentrations from prodelta and siliciclastic ramp in a Tortonian Atlantic-Mediterranean strait (Miocene, Guadix Basin, southern Spain). Facies 58(4):549–571

    Google Scholar 

  • Reolid M, García-García F, Reolid J, de Castro A, Bueno JF, Martín-Suárez E (2016) Palaeoenvironmental interpretation of a sand-dominated coastal system of the Upper Miocene of eastern Guadalquivir Basin (south Spain): fossil assemblages, ichnology and taphonomy. J Iberian Geol 42:275–290

    Google Scholar 

  • Rodríguez-Tovar FJ, Aguirre J (2014) Is Macaronichnus an exclusively small, horizontal and unbranched structure? Macaronichnus segregatis degiberti isubsp. nov. Spanish J Palaeontol 29:131–142

    Google Scholar 

  • Rögl F (1998) Palaeogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene). Annalen des Naturhistorischen Museums in Wien 99A:279–310

    Google Scholar 

  • Rudwick MJS (1970) Living and Fossil Brachiopods, London: Hutchinson University Library, Biological Sciences, 199

  • Sacco F (1902) I Brachiopodi dei terreni terziarii del Piemonte e della Liguria: Turín, Carlo Clausen, 50 p

  • Sandy MR (1995) Early Mesozoic (Late Triassic-Early Jurassic) Tethyan brachiopod biofacies: possible evolutionary intra-phylum niche replacement within the Brachiopoda. Paleobiology 21(4):479–495

    Google Scholar 

  • Sanz de Galdeano C, Rodríguez-Fernández J (1996) Neogene palaeogeography of the Betic Cordillera: an attempt at reconstruction. In: Friend PF, Dabrio CJ (eds) Tertiary Basins of Spain. The Stratigraphic Record of Crustal Kinematics. Cambridge University Press, Cambridge, pp 323–329

    Google Scholar 

  • Sanz de Galdeano C, Vera JA (1992) Stratigraphic record and palaeogeographical context of the Neogene basins in the Betic Cordillera, Spain. Basin Res 4(1):21–35

    Google Scholar 

  • Savrda CE (2007) Taphonomy of Trace Fossils. In: Miller W III (ed) Trace fossils, concepts, problems, perspectives. Elsevier, Amsterdam, pp 92–109

    Google Scholar 

  • Seguenza G (1866) Intorno ai brachiopodi miocenici delle Provincie Piemontesi. Annali dell’Accademia degli Aspiranti Naturalisti Napoli 6:3–17

    Google Scholar 

  • Seike K, Yanagishima S, Nara M, Sasaki T (2011) Large Macaronichnus in modern shoreface sediments: identification of the producer, the mode of formation, and paleoenvironmental implications. Palaeogeogr Palaeoclimatol Palaeoecol 311:224–229

    Google Scholar 

  • Seilacher A (1978) Use of trace fossil assemblages for recognizing depositional environments. Society of Economic Paleontologists and Mineralogists (SEPM), short course 5, pp 167–181

  • Seilacher A (2007) Trace fossil analysis. Springer, Berlin, p 226

    Google Scholar 

  • Soria JM (1994) Evolución sedimentaria y paleogeográfica durante el Mioceno superior en el borde norte de la Cuenca de Guadix, Cordillera Bética central. Est Geol 50:59–69

    Google Scholar 

  • Soria JM, Viseras C, Fernández J (1998) Late Miocene-Pleistocene tectono-sedimentary evolution and subsidence history of the central Betic Cordillera (Spain): a case study in the Guadix intramontane basin. Geol Mag 135(4):565–574

    Google Scholar 

  • Soria JM, Fernádez J, Viseras C (1999) Late Miocene stratigraphy and palaeogeographic evolution of the intramontane Guadix Basin (Central Betic Cordillera, Spain): implications for an Atlantic-Mediterranean connection. Palaeogeogr Palaeoclimatol Palaeoecol 151:255–266

    Google Scholar 

  • Soria JM, Fernández J, García F, Viseras C (2003) Correlative lowstand deltaic and shelf systems in the Guadix Basin (Late Miocene, Betic Cordillera, Spain): the stratigraphic record of forced and normal regressions. J Sediment Res 73:912–925

    Google Scholar 

  • Soria JM, Giannetti A, Monaco P, Corbí H, García-Ramos D, Viseras C (2014) Cyclically-arranged, storm-controlled, prograding lithosomes in Messinian terrigenous shelves (Bajo Segura Basin, western Mediterranean). Sediment Geol 310:1–15

    Google Scholar 

  • Taddei Ruggiero E (1994) Neogene Salento brachiopod palaeocommunities. Bollettino della Società Paleontologica Italiana 33:197–213

    Google Scholar 

  • Taddei Ruggiero E (1996) Biostratigrafia e paleoecologia delle Calcareniti di Gravina nei dintorni di Cerignola (brachiopodi e foraminiferi). Memorie della Società Geologica Italiana 51:197–207

    Google Scholar 

  • Taddei Ruggiero E, Raia P, Buono G (2008) Geometric morphometrics species discrimination within the genus Terebratula from the Late Cenozoic of Italy. Fossils Strata 54:209–217

    Google Scholar 

  • Toscano-Grande A, García-Ramos D, Ruiz-Muñoz F, González-Regalado ML, Abad M, Civis J, González-Delgado JA, Rico-García A, Martínez-Chacón ML, García EX, Pendón-Martín JG (2010) Braquiópodos neógenos del suroeste de la depresión del Guadalquivir (sur de España). Revista Mexicana de Ciencias Geológicas 27(2):254–263

    Google Scholar 

  • Uchman A (2009) The Ophiomorpha rudis ichnosubfacies of the Nereites ichnofacies: characteristics and constraints. Palaeogeogr Palaeoclimatol Palaeoecol 276:107–119

    Google Scholar 

  • Uchman A, Krenmayr HG (2004) Trace fossils, ichnofabrics and sedimentary facies in the shallow marine Lower Miocene Molasse of upper Austria. Jahrbuch der Geologischen Bundesantalt 144:233–251

    Google Scholar 

  • Uchman A, Johnson ME, Rebelo AC (2016) Vertically-oriented trace fossil Macaronichnus segregatis from Neogene of Santa Maria Island (Azores; NE Atlantic) records vertical fluctuations of the coastal groundwater mixing zone on a small oceanic island. Geobios 49:229–241

    Google Scholar 

  • van Hinsbergen DJJ, Kouwenhoven TJ, van der Zwaan GJ (2005) Paleobathymetry in the backstripping procedure: correction for oxygenation effects on depth estimates. Palaeogeogr Palaeoclimatol Palaeoecol 221:245–265

    Google Scholar 

  • Wetzel A, Aigner T (1986) Stratigraphic completeness: tiered trace fossils provide a measuring stick. Geology 14:234–237

    Google Scholar 

Download references

Acknowledgements

This research was supported by the projects CGL2015-66835-P and CGL2015-66604-R, financed by the Spanish Ministry of Education and Science (MINECO, Government of Spain), VIGROB-167, financed by the University of Alicante, and the Hungarian Scientific Research Fund (OTKA K112708). We also gratefully acknowledge M.A. Bitner, M. Reolid, and the editor for their valuable comments and constructive reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Giannetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giannetti, A., Baeza-Carratalá, J.F., Soria-Mingorance, J.M. et al. New paleobiogeographical and paleoenvironmental insight through the Tortonian brachiopod and ichnofauna assemblages from the Mediterranean-Atlantic seaway (Guadix Basin, SE Spain). Facies 64, 24 (2018). https://doi.org/10.1007/s10347-018-0536-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10347-018-0536-1

Keywords

Navigation