Skip to main content
Log in

3D morphometry of polyconitid rudist bivalves based on grinding tomography

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

Previous taxonomic studies have shown that polyconitid rudists have a characteristic arrangement of the myocardinal system with an ectomyophoral cavity on the posterior side of the left valve. The specific arrangement of the myophores and associated cavities defines the different genera. However, there has been little research on the three-dimensional spatial distribution and size of the internal features, for want of a technique that is suitable for large and low density-contrast specimens. The tomographic technique described herein is based on automatic serial grinding and serial scanning; the resulting images are treated with biomedical image software. The technique has been applied to a pair of well-preserved specimens of Polyconites verneuili from the Upper Aptian of Spain. Fifteen quantitative characters have been obtained using multiplanar virtual cuts, volume-rendering, and isosurfaces reconstructions. The study revealed the shape, size, and distribution of the ectomyophoral, body and accessory cavities, the lengths and volumes of the teeth, and the arrangement of the myophores. We conclude that this technique facilitates the description of rudist bivalves and is suitable for other fossils; moreover, it has the potential to be used in other fields of geology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ager D (1965) Serial grinding techniques. In: Kummel B, Raup D (eds) Handbook of paleontological techniques. W. H. Freeman, San Francisco, pp 212–224

    Google Scholar 

  • Baker P (1978) A technique for the accurate reconstruction of internal structures of micromorphic fossils. Palaeontology 21:463–467

    Google Scholar 

  • Borkin MA, Ridge NA, Goodman AA, Halle M (2005) Demonstration of the applicability of 3D Slicer to Astronomical Data Using 13CO and C18O Observations of IC348. Arxiv preprint astro-ph/0506604

  • Born G (1883) Die Plattenmodelliermethode. Archiv mikrosk Anat 22:584–599

    Article  Google Scholar 

  • Chartrousse A, Masse JP (2004) Revision of the early Aptian Caprininae (rudis bivalves) of the new world. Evolutionary and palaeobiogeographic implications. Cour Forsch-Inst Senckenberg 247:19–34

    Google Scholar 

  • Coquand H (1865) Monographie de l’étage aptien de l’Espagne. Mém Soc d′Emul Provence 5:191–413

    Google Scholar 

  • Croft W (1950) A parallel grinding instrument for the investigation of fossils by serial sections. J Paleont 24:693–698

    Google Scholar 

  • Di-Stefano G (1899) Studi stratigrafici e paleontologici sul sistema cretaceo della Sicilia. I calcari con Polyconites di Termini-Imerese. Palaeontogr it 4:1–46

    Google Scholar 

  • Douvillé H (1889) Sur quelques rudistes du terrain crétacé inférieur des Pyrénées. Bull Soc géol France 17:627–655

    Google Scholar 

  • Fenerci-Masse M, Skelton P, Masse JP (2011) The rudist bivalve genus Gorjanovicia (Radiolitidae, Hippuritoidea) a revision of species based on quantitative analysis of morphological characters. Palaeontology 54:1–23

    Article  Google Scholar 

  • Götz S (2003) Larval settlement and ontogenetic development of Hippuritella vasseuri (Douvillé) (Hippuritoidea, Bivalvia). Geol Croat 56:2

    Google Scholar 

  • Götz S (2007) Inside rudist ecosystems: growth, reproduction, and population dynamics. Cretaceous rudists and carbonate platforms: environmental feedback. SEPM (Soc Sediment Geol) 87:97–113

    Google Scholar 

  • Götz S, Stinnesbeck W (2003) Reproductive cycles, larval mortality and population dynamics of a Late Cretaceous hippuritid association: a new approach to the biology of rudists based on quantitative three‐dimensional analysis. Terra Nova 15:392–397

    Article  Google Scholar 

  • Hammer Ø (1999) Computer-aided study of growth patterns in tabulate corals, exemplified by Catenipora heintzi from Ringerike, Oslo Region. Norsk Geol Tidsskr 79:219–226

    Article  Google Scholar 

  • Hendry R, Rowell A, Stanley J (1963) A rapid parallel grinding machine for serial sectioning of fossils. Palaeontology 6:145–147

    Google Scholar 

  • Hennhöfer DK, Götz S, Mitchell SF (2012) Palaeobiology of a Biradiolites mooretownensis rudist lithosome–seasonality, reproductive cyclicity and population dynamics. Lethaia. doi:10.1111/j.1502-3931.2012.00307.x

  • Hughes G, Siddiqui S, Sadler R (2004) Computerized tomography reveals Aptian rudist species and taphonomy. Geol Croat 57:67–71

    Google Scholar 

  • Joy K, Willis A, Lacey W (1956) A rapid cellulose peel technique in palaeobotany. Ann Bot 20:635

    Google Scholar 

  • Katz A, Friedman M (1965) The preparation of stained acetate peels for the study of carbonate rocks. J Sediment Res 35:248–249

    Article  Google Scholar 

  • Kruta I, Landman N, Rouget I, Cecca F, Tafforeau P (2011) The role of ammonites in the mesozoic marine food web revealed by jaw preservation. Science 331:70–72. doi:10.1126/science.1198793

    Article  Google Scholar 

  • Lane D (1962) Improved acetate peel technique. J Sediment Res 32:870

    Article  Google Scholar 

  • Mac Gillavry HJ (1937) Geology of the province of Camaguey, Cuba with revisional studies in rudist paleontology (mainly based upon collections from Cuba). Geograph Geol Mededeel 14:1–168

    Google Scholar 

  • Malchus N (1998) Aptian (Lower Cretaceous) rudist bivalves from NE Spain: taxonomic problems and preliminary results. Geobios 31:181–191

    Article  Google Scholar 

  • Mas R (1981) El Cretácico inferior de la región noroccidental de la provincia de Valencia. Dissertation, Universidad Complutense de Madrid. Madrid. Seminar Estratigr 8:1–409

    Google Scholar 

  • Masse J, Shiba M (2010) Praecaprotina kashimae nov. sp. (Bivalvia, Hippuritacea) from the Daiichi-Kashima Seamount (Japan Trench). Cret Res 31:147–153

    Article  Google Scholar 

  • Masse J, Arias C, Vilas L (1998) Lower Cretaceous rudist faunas of Southeast Spain: an overview. Geobios 31:193–210

    Article  Google Scholar 

  • Masse JP, Fenerci-Masse M, Özer S (2002) Late Aptian rudist faunas from the Zonguldak region, western Black Sea, Turkey (taxonomy, biostratigraphy, palaeoenvironment and palaeobiogeography). Cret Res 23:523–536

    Article  Google Scholar 

  • Melissano G, Bertoglio L, Civelli V, Moraes Amato A, Coppi G, Civilini E, Calori G, De Cobelli F, Del Maschio A, Chiesa R (2009) Demonstration of the Adamkiewicz artery by multidetector computed tomography angiography analysed with the open-source software OsiriX. Europ J Vasc Endovasc Surg 37:395–400

    Article  Google Scholar 

  • Molineux A, Scott R, Ketcham R, Maisano J (2007) Rudist taxonomy using X-ray computed tomography. Palaeont Electro 10, http://palaeo-electronica.org/2007_3/135/index.html

  • Molineux A, Scott R, Maisano J, Ketcham R, Zachos L (2010) Blending rudists with technology; non-destructive examination of the internal and external structures of rudists using high quality scanning and digital imagery. Turkish J Earth Sci 19:757–767

    Google Scholar 

  • Muir-Wood H (1934) On the internal structure of some Mesozoic Brachiopoda. Phil Trans Roy Soc Lond Ser B 223:511–567

    Article  Google Scholar 

  • Ovcharenko V (1967) Method of studying the internal structure of fossil brachiopod shells. Paleont Jam 104–108

  • Ratib O, Rosset A (2006) Open-source software in medical imaging: development of OsiriX. Int J Comp Assist Radiol Surg 1:187–196

    Article  Google Scholar 

  • Sandy M (1989) Preparation of serial sections, Paleotechniques. Paleont Soc Spec Publ 4:146–156

    Google Scholar 

  • Scott RW, Weaver M (2010) Ontogeny and functional morphology of a Lower Cretaceous caprinid rudist (Bivalvia, Hippuritoida). Turkish J Earth Sci 19:527–542

    Google Scholar 

  • Skelton PW, Smith AB (2000) A preliminary phylogeny for rudist bivalves: sifting clades from grades. Geol Soc Lon Spec Publ 177:97–127

    Article  Google Scholar 

  • Skelton PW, Gili E, Bover-Arnal T, Salas R, Moreno-Bedmar JA (2010) A new species of Polyconites from the lower Aptian of Iberia and the early evolution of polyconitid rudists. Turkish J Earth Sci 19:557–572

    Google Scholar 

  • Sollas W (1903) A method for the investigation of fossils by serial sections. Phil Trans R Soc 196:259–265

    Google Scholar 

  • Sollas I, Sollas W (1913) A study of the skull of a Dicynodon by means of serial sections. Phil Trans R Soc Lond Ser B 204:201–225

    Article  Google Scholar 

  • St. Joseph JKS (1937) On Camarototoechia borealis (von Buch 1834, ex Schlotheim 1832). Geol Mag 74:33–48

    Article  Google Scholar 

  • Sutton M (2008) Tomographic techniques for the study of exceptionally preserved fossils. Proc R Soc B: Biol Sci 275:1587

    Article  Google Scholar 

  • Sutton M, Briggs D, Siveter D (2001) Methodologies for the visualization and reconstruction of three-dimensional fossils from the Silurian Herefordshire Lagerstätte. Palaeontol Electr 4:1–17

    Article  Google Scholar 

  • Tutton A (1894) An instrument for cutting, grinding, and polishing section-plates and prisms of mineral or other crystals accurately in the desired directions. Proc R Soc Lond 57:324–330

    Article  Google Scholar 

  • Vicens E, Ardèvol L, López-Martínez N, Arribas M (2004) Rudist biostratigraphy in the Campanian-Maastrichtian of the south-central Pyrenees, Spain. Courier Forsch-nst Senckenberg 247:113–127

    Google Scholar 

  • Walton J (1928) A method of preparing sections of fossil plants contained in coal balls or in other types of petrifaction. Nature 122:571

    Article  Google Scholar 

  • Watters WA, Grotzinger JP (2001) Digital reconstruction of calcified early metazoans, terminal Proterozoic Nama Group, Namibia. Paleobiology 27:159–171

    Article  Google Scholar 

  • Weidenhagen R, Meimarakis G, Jauch KW, Becker CR, Kopp R (2008) OsiriX. Gefässchirurgie 13:278–290. doi:10.1007/s00772-008-0608-6

    Article  Google Scholar 

  • Westbroek P, van der Meide PH, van der Wey-Kloppers JS, van der Sluis RJ, de Leeuw JW, de Jong EW (1979) Fossil macromolecules from cephalopod shells: characterization, immunological response and diagenesis. Paleobiology 5:151–167

    Google Scholar 

  • Yamauchi T, Yamazaki M, Okawa A, Furuya T, Hayashi K, Sakuma T, Takahashi H, Yanagawa N, Koda M (2010) Efficacy and reliability of highly functional open source DICOM software (OsiriX) in spine surgery. J Clin Neurosci 17:756–759

    Article  Google Scholar 

Download references

Acknowledgments

Helpful reviews by Peter W. Skelton and Ann Molineux contributed to improve this work. Thanks to our colleagues Ramon Salas, Eulàlia Gili, Telm Bover, Ramon Mas, and Jesús García for the valuable comments on stratigraphical and paleontological details. Patrick Zell and Yvonne Spychala did great jobs in preparation, scanning, and image evaluation. Thanks to Francisco J. Cueto for his help with the software. Financial support was granted by Heidelberg University (“Heidelberg Center for the Environment HCE”, “Frontier Innovationsfonds”), by Deutsche Forschungsgemeinschaft (DFG) project GO 1021/3-2, by the German Academic Exchange Service DAAD (Acciones Integradas), and by the Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg (“RiSC–Research seed capital”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enric Pascual-Cebrian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1 (OR1.mov) Interactive volume rendering video of the specimen CH01 (MPG 9244 kb)

Online Resource 2 (OR2.mov) Volume rendering video of the specimen CH02 (MPG 2068 kb)

Online Resource 3 (OR3.mov) Isosurfaces reconstruction video of the free valve of the specimen CH01 (MPG 7412 kb)

Online Resource 4 (OR4.mov) Isosurfaces reconstruction video of the right valve of the specimen CH01 (MPG 5072 kb)

Online Resource 5 (OR5.mov) Interactive isosurfaces reconstruction video of the FV of the specimen CH01 (MPG 7358 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pascual-Cebrian, E., Hennhöfer, D.K. & Götz, S. 3D morphometry of polyconitid rudist bivalves based on grinding tomography. Facies 59, 347–358 (2013). https://doi.org/10.1007/s10347-012-0310-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-012-0310-8

Keywords

Navigation