Skip to main content

Advertisement

Log in

Middle Lutetian climate in the Paris Basin: implications for a marine hotspot of paleobiodiversity

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

The present study reports the evolution of environmental conditions and seawater temperatures during the establishment of a marine hotspot of paleobiodiversity that took place in the Paris Basin during the Lutetian. The stable isotope compositions (δ18O and δ13C) of three species of molluscs (two bivalves: Cubitostrea plicata and Venericardia imbricata, and one gastropod: Sigmesalia multisulcata) collected along the reference section of Grignon (Falunière) are used for paleoenvironmental and paleoclimatic reconstructions. Additional high-resolution analyses on one specimen of Haustator imbricatarius allow the documentation of seasonal changes for temperature. The high-resolution profiles of the δ18O signatures of S. multisulcata reveal that these gastropods mineralized their shell during the warm months of the year, as did V. imbricata, which probably had a short life span (less than 1 year). These two species thus only yield temperatures for the summer period, from 22 to 30 °C. The δ18O of C. plicata shells indicate mean annual sea surface temperatures ranging between 15 and 23 °C during the Middle Lutetian, with minimal temperatures probably reflecting greater depth at the base of the section. The seasonal contrasts reconstructed in the upper part of the section, from the large gastropod H. imbricatarius, ranged between 18 and 30 °C. Comparison of the isotopic values of the species indicates that the δ13C of the three taxa seems to be mostly influenced by ecological features, leading to differences between endobenthic (V. imbricata) and epibenthic species (C. plicata); or the food habits. The paleoclimatic reconstructions show that the Lutetian climate was relatively stable in the Paris Basin with long-term cooling of the mean annual sea-surface temperatures. Nevertheless, this study shows that despite a context of colder conditions compared to the Early Eocene, the climate provided a favorable context for the increase of marine biodiversity in the Paris Basin during the Middle Lutetian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abrard R (1925) Le Lutétien du Bassin de Paris: Essai de monographie stratigraphique. Société Française d’Imprimerie, Angers 388 p

    Google Scholar 

  • Al-Aasm I, Veizer J (1986) Diagenetic stabilization of aragonite and low-Mg calcite; II, Stable isotopes in rudists. J Sediment Petrol 56:763–770

    Google Scholar 

  • Allmon W (1988) Ecology of Recent turritelline gastropods (Prosobranchia, Turritellidae): current knowledge and paleontological implications. Palaios 3:259–284

    Article  Google Scholar 

  • Allmon W (2011) Natural history of turritelline gastropods (Cerithiodea: Turritellidae): a status report. Malacologia 54:159–202

    Article  Google Scholar 

  • Anderson TF, Arthur MA (1983) Stable isotopes of oxygen and carbon and their applications to sedimentological and palaeoenvironmental problems. In: Arthur MA, Anderson TF, Kaplan IR, Veizer J, Land LS (eds) Stable isotopes in sedimentary geology. Soc Econ Paleontol Miner Short Course, vol 10, pp 1–151

  • Andreasson FP, Schmitz B (1996) Winter and summer temperatures of the early middle Eocene of France from Turritella δ18O profiles. Geology 24:1067–1070

    Article  Google Scholar 

  • Andreasson FP, Schmitz B (1997) Winter and summer temperatures of the early middle Eocene of France from Turritella δ18O profiles: reply. Geology 25:958–960

    Google Scholar 

  • Andreasson FP, Schmitz B (2000) Temperature seasonality in the early middle Eocene North Atlantic region: evidence from stable isotope profiles of marine gastropod shells. Geol Soc Am Bull 112:628–640

    Article  Google Scholar 

  • Aubry M-P (1985) Northwestern European Paleogene magnetostratigraphy: calcareous nannofossil evidence. Geology 13:198–202

    Article  Google Scholar 

  • Bijl PK, Schouten S, Sluijs A, Reichart GJ, Zachos JC, Brinkhuis H (2009) Early Palaeogene temperature evolution of the southwest Pacific Ocean. Nature 461:776–779

    Article  Google Scholar 

  • Bohaty SM, Zachos JC, Florindo F, Delaney ML (2009) Coupled greenhouse warming and deep-sea acidification in the middle Eocene. Paleoceanography 24, doi:10.1029/2008PA001676

  • Bouchet P, Lozouet P, Maestrati P, Heros V (2002) Assessing the magnitude of species richness in tropical marine environments: exceptionally high number of molluscs at a New Caledonia site. Biol J Linn Soc 75:421–436

    Article  Google Scholar 

  • Brunet MF, Le Pichon X (1982) Subsidence of the Paris Basin. J Geophys Res 87:8547–8560

    Article  Google Scholar 

  • Buchardt B (1978) Oxygen isotope palaeotemperatures from the Tertiary period in the North Sea area. Nature 275:121–123

    Article  Google Scholar 

  • Burgess CE, Pearson PN, Lear CH, Morgans HEG, Handley L, Pancost RD, Schouten S (2008) Middle Eocene climate cyclicity in the southern Pacific: implications for global ice volume. Geology 36:651–654

    Article  Google Scholar 

  • Carick N (1980) Aspects of the biology of molluscs on the continental shelf of Sydney, NSW with particular reference to the population biology of Gazameda gunnii (Reeve, 1949). Thesis. University of Sydney, Australia 175 p

    Google Scholar 

  • Carter JG (1980) Guide to bivalve shell microstructures. In: Rhoads DC, Lutz RA (eds) Skeletal growth of aquatic organisms. Plenum Press, New York, p 142

    Google Scholar 

  • Cavelier C, Pomerol C (1979) Chronologie et interprétation des évènements tectoniques cénozoïques dans le Bassin de Paris. Bull Soc Géol Fr 21(7):33–48

    Google Scholar 

  • Caze B, Merle D, Pacaud J-M, Saint Martin J-P (2010) First systematic study using the variability of the residual colour patterns: the case of the Paleogene Seraphsidae (Mollusca, Gastropoda, Stromboidea). Geodiversitas 32:417–477

    Article  Google Scholar 

  • Caze B, Merle D, Le Meur M, Pacaud J-M, Ledon D, Saint Martin J-P (2011) Taxonomic implications of the residual color patterns of ampullinid gastropods and their contribution to the discrimination of naticids. Acta Paleont Polon 56:353–371

    Google Scholar 

  • Chaix C (1979) Enseignements d’ordre paléoécologique tirés de l’étude des Turbinolia et Sphenotrochus (Scléractiniaires) du Bassin de Paris. Répartition stratigraphique et géographique de ces deux genres. Bull Inf Géol Bass Paris 16:35–37

    Google Scholar 

  • Crampton JS, Foote M, Cooper RA, Beu AG, Peters SE (2011) The fossil record and spatial structuring of environments and biodiversity in the Cenozoic of New Zealand. In: McGowan AJ, Smith AB (eds) Comparing the geological and fossil records: implications for biodiversity studies. Geological Society of London Special Publications, vol 358, pp 105–122, doi:10.1144/SP358.8

  • Davitashvili LS, Merklin RL (1968) Handbook on the ecology of marine Gastropoda. Akademi Nauk Gruzinskoi S.S.R. Tbilisi Institute of Paleobiology, Tbilissi

    Google Scholar 

  • de Franceschi D (2009) Les grandes lignes de la paléobiodiversité au Lutétien: les paléoflores. Géochronique 109:1–23

    Google Scholar 

  • de Gregorio A (1880) Fauna di San Giovanni Ilarione. Montaina, Palermo 106 p

    Google Scholar 

  • Epstein S, Buchsbaum R, Lowenstam HA, Urey HC (1953) Revised carbonate-water isotopic temperature scale. Geol Soc Am Bull 64:1315–1326

    Article  Google Scholar 

  • Fan C, Koeniger P, Wang H, Frechen M (2011) Ligamental increments of the mid-Holocene Pacific oyster Crassostrea gigas are reliable independent proxies for seasonality in the western Bohai Sea, China. Palaeogeogr Palaeoclimatol Palaeoecol 299:437–448

    Article  Google Scholar 

  • Gély J-P (1996) Le Lutétien du Bassin Parisien : de l’analyse séquentielle haute résolution à la reconstitution paléogéographique. Bull Inf Géol Bass Paris 34:3–27

    Google Scholar 

  • Gély J-P (2008) La stratigraphie et la paléogéographie du Lutétien en France. In: Merle D (ed) Stratotype Lutétien. MNHN/BRGM, Paris/Orléans, pp 182–227

    Google Scholar 

  • Génot P (2009) Cenozoic dasycladales. A photo-atlas of Lutetian species from French Cenozoic basins. Notebooks Geological Special Papers, vol 1, 180 p

  • Goodwin DH, Schöne BR, Dettman DL (2003) Resolution and fidelity of oxygen isotopes as paleotemperature proxies in bivalve mollusk shells: models and observations. Palaios 18:110–125

    Article  Google Scholar 

  • Graham A (1938) On a ciliary process of food-collecting in the gastropod Turritella communis Risso. Proc Zool Soc Lond 108:543–563

    Google Scholar 

  • Greenwood DR, Wing SL (1995) Eocene continental climates and latitudinal temperature gradients. Geology 23:1044–1048

    Article  Google Scholar 

  • Grossman EL, Ku TL (1986) Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chem Geol 59:59–74

    Article  Google Scholar 

  • Guélorget O, Perthuizot J-P (1983) Le domaine paralique: expressions géologiques, biologiques et économique du confinement. Travaux du laboratoire de géologie de l’ENS 16:1–136

    Google Scholar 

  • Guernet C, Huyghe D, Lartaud F, Merle D, Emmanuel L, Gély J-P, Michel F, Pilet O (in press) La faune d’Ostracodes de la falunière de Grignon (Lutétien du Bassin de Paris): implications stratigraphiques et paléogéographiques. Geodiversitas

  • Guillocheau F, Robin C, Allemand P, Bourquin S, Brault N, Dromart G, Friedenberg R, Garcia J-P, Gaulierg J-M, Gaumet F, Grosdoya B, Hanot F, Le Stratj P, Mettraux M, Nalpas T, Prijaca C, Rigolleta C, Serrano O, Grandjean G (2000) Meso-Cenozoic geodynamic evolution of the Paris Basin: 3D stratigraphic constraints. Geodin Acta 13:189–246

    Article  Google Scholar 

  • Hansen TA (1988) Early Tertiary radiation of marine molluscs and the long term effects of the Cretaceous Tertiary extinction. Paleobiology 14:37–51

    Google Scholar 

  • Haveles AW, Ivany LC (2010) Rapid growth explains large size of molluscs in the Eocene Gosport Sand, United States Gulf Coast. Palaios 25:550–564

    Article  Google Scholar 

  • Huyghe D, Castelltort S, Mouthereau F, Serra-Kiel J, Filleaudeau P-Y, Emmanuel L, Berthier B, Renard M (2012) Large scale facies change in the middle-Eocene South-Pyrenean foreland basin: the role of tectonics and prelude to Cenozoic ice-ages. Sediment Geol 253–254:25–46

    Article  Google Scholar 

  • Ivany LC, Runnegar B (2010) Early Permian seasonality from bivalve δ18O and implications for the oxygen isotopic composition of seawater. Geology 38:1027–1030

    Article  Google Scholar 

  • Ivany LC, Nesbitt EA, Prothero DR (2003) The marine Eocene–Oligocene transition: a synthesis. In: Prothero DR, Ivany LC, Nesbitt EA (eds) From Greenhouse to Icehouse: the marine Eocene–Oligocene transition. Columbia University Press, New York, pp 522–534

    Google Scholar 

  • Ivany LC, Wilkinson BH, Lohman KC, Johnson ER, McElroy BJ, Cohen GJ (2004) Intra-annual isotopic variation in Venericardia bivalves: implications for early Eocene temperatures, seasonality, and salinity on the U.S. Gulf Coast J Sediment Res 74:7–19

    Google Scholar 

  • Ivany LC, Lohmann KC, Hasiuk F, Blacke DB, Glass A, Aronson RB, Moody RM (2008) Eocene climate record of a high southern latitude continental shelf: Seymour Island, Antarctica. Geol Soc Am Bull 120:659–678

    Article  Google Scholar 

  • Janssen R, Zuschin M, Baal C (2011) Gastropods and their habitats from the northern Red Sea (Egypt: Safaga) Part 2: Caenogastropoda: Sorbeoconcha and Littorinimorpha. Ann Naturhist Mus Wien, Ser A 113:373–509

    Google Scholar 

  • Jones D, Quitmyer IR (1996) Marking time with bivalve shells: oxygen isotopes and season of annual increment formation. Palaios 11:340–346

    Article  Google Scholar 

  • Kantor Y, Sisoev AV (2005) A preliminary analysis of biodiversity of molluscs of Russia. Ruthenica 14:107–118

    Google Scholar 

  • Killingley JS, Berger WH (1979) Stable isotopes in a mollusk shell: detection of upwelling events. Science 205:186–188

    Article  Google Scholar 

  • Kirby MX (2000) Paleoecological differences between Tertiary and Quaternary Crassostrea oysters as revealed by stable isotope sclerochronology. Palaios 15:132–141

    Google Scholar 

  • Kirby MX, Soniat TM, Spero HJ (1998) Stable isotope sclerochronology of Pleistocene and recent oyster shells (Crassostrea virginica). Palaios 13:560–569

    Article  Google Scholar 

  • Klein RT, Fricke HC, Purton L, Brasier M, Andreasson FP, Schmitz B (1997) Winter and summer temperatures of the early middle Eocene of France from Turitella δ18O profiles: comments and reply. Geology 25:957–958

    Article  Google Scholar 

  • Kobashi T, Grossman EL (2003) The oxygen isotopic record of seasonality in Conus shells and is application to understanding late middle Eocene (38 Ma) climate. Paleontol Res 7:343–355

    Article  Google Scholar 

  • Kobashi T, Grossman EL, Yancey TE, Dockery DT (2001) Reevaluation of conflicting Eocene tropical temperature estimates: Molluskan oxygen evidence for warm low latitudes. Geology 29:983–986

    Article  Google Scholar 

  • Lartaud F, Langlet D, de Rafelis M, Emmanuel L, Renard M (2006) Mise en évidence de rythmicité saisonnière dans la coquille des huîtres fossiles Crassostrea aginensis Tournouer, 1914 (Aquitanien) et Ostrea bellovacina Lamarck, 1806 (Thanétien). Approche par cathodoluminescence et par sclérochronologie. Geobios 39:845–852

    Article  Google Scholar 

  • Lartaud F, Emmanuel L, de Rafelis M, Ropert M, Labourdette N, Richardson CA, Renard M (2010a) A latitudinal gradient of seasonal temperature variation recorded in oyster shells from the coastal waters of France and the Netherlands. Facies 56:13–25

    Article  Google Scholar 

  • Lartaud F, de Rafelis M, Ropert M, Emmanuel L, Geairon P, Renard M (2010b) Mn labelling of living oysters: artificial and natural cathodoluminescence analysis as a tool for age and growth rate determination of C. gigas (Thunberg, 1793) shells. Aquaculture 300:206–217

    Article  Google Scholar 

  • Lartaud F, Emmanuel L, de Rafelis M, Pouvreau S, Renard M (2010c) Influence of food supply on the δ13C signature of mollusc shells: implications for palaeoenvironmental reconstitutions. Geo-Mar Lett 30:23–34

    Article  Google Scholar 

  • Lartaud F, de Rafelis M, Olivier G, Krylova E, Dyment J, Ildefonse B, Thibaud R, Gente P, Hoisé E, Meistertzheim A-L, Fouquet Y, Gaill F, Le Bris N (2010d) Fossil clams from a serpentinite-hosted sedimented vent field near the active smoker complex Rainbow, MAR, 36°13′N: insight into the biogeography of vent fauna. Geochem Geophys Geosyst, vol 11. doi:10.1029/2010GC003079

    Google Scholar 

  • Latal C, Piller WE, Harzhauser M (2006) Shifts in oxygen and carbon isotope signals in marine molluscs from the Central Paratethys (Europe) around the Lower/Middle Miocene transition. Palaeogeogr Palaeoclimatol Palaeoecol 231:347–360

    Article  Google Scholar 

  • Le Calvez Y (1970) Contribution à l’étude des foraminifères paléogènes du Bassin de Paris. Cahiers Paléontol CNRS, Paris

    Google Scholar 

  • Le Calvez Y, Le Renard J (1980) Paléontologie de deux célèbres gisements éocènes (Lutétien et Auversien) des environs de Paris. Compte rendu de l’excursion B-22. In: 26th Int Geol Cong, Paris. Bull Inf Géol Bass Paris, n° hors ser, pp 1–8

  • Lear CH, Elderfield H, Wilson PA (2000) Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287:269–272

    Article  Google Scholar 

  • Lozouet P (1997) Le domaine atlantique européen au Cénozoïque moyen: diversité et évolution des Gastéropodes. PhD Thesis, Muséum national d’Histoire naturelle, Paris, 309 p

  • McConnaughey TA (1989) 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects. Geochim Cosmochim Acta 53:163–171

    Article  Google Scholar 

  • McConnaughey TA, Gillikin DP (2008) Carbon isotopes in mollusk shell carbonates. Geo-Mar Lett 28:287–299. doi:10.1007/s00367-008-0116-4

    Article  Google Scholar 

  • McConnaughey TA, Burdett J, Whelan JF, Paull CK (1997) Carbon isotopes in biological carbonates: respiration and photosynthesis. Geochim Cosmochim Acta 61:611–622

    Article  Google Scholar 

  • Merle D (1986) Contribution à l’étude paléontologique du gisement cuisien de Gan (Pyrénées-Atlantiques): systématique, évolution et paléoécologie. Mémoire de l’EPHE, (Dijon) 394 p

  • Merle D (2008) Le Lutétien du bassin de Paris: un exemple de point-chaud de la paléobiodiversité. In: Merle D (ed) Stratotype Lutétien. MNHN/BRGM, Paris/Orléans, pp 174–181

    Google Scholar 

  • Merle D, Courville P (2008) Les sites remarquables. In: Merle D (ed) Stratotype Lutétien. MNHN/BRGM, Paris/Orléans, pp 64–75

    Google Scholar 

  • Merle D, Pacaud J-M, Kriloff A, Loubry P (2008) Le Lutétien du Bassin de Paris: un exemple de point chaud de la paléobiodiversité. Les motifs colorés résiduels des coquilles lutétiennes du bassin de Paris. In: Merle D (ed) Stratotype Lutétien. BRGM/MNHN, Orléans/Paris, pp 182–227

    Google Scholar 

  • Miller KG, Fairbanks RA, Mountain GS (1987) Tertiary oxygen isotope synthesis, sea-level history and continental margin erosion. Paleoceanography 2:1–19

    Article  Google Scholar 

  • Pacaud J-M, Le Renard J (1995) Révision des mollusques paléogènes du Bassin de Paris. IV—Liste systématique réactualisée. Cossmanniana 3:151–187

    Google Scholar 

  • Payros A, Tosquella J, Bernaola G, Dinarès-Turell J, Orue-Etxebarria X, Pujalte V (2009) Filling the North European Early/Middle Eocene (Ypresian/Lutetian) boundary gap: insights from the Pyrenean continental to deep-marine record. Palaeogeogr Palaeoclimatol Palaeoecol 280:313–332

    Article  Google Scholar 

  • Pekar SF, Hucks A, Fuller M, Li S (2005) Glacio-eustatic changes in the early and middle Eocene (51–42 Ma): shallow-water stratigraphy from ODP Leg 189 Site 1171 (South Tasman Rise) and deep-sea δ18O records. Geol Soc Am Bull 117:1081–1093

    Article  Google Scholar 

  • Pérèz JM, Picard J (1964) Nouveau manuel de bionomie benthique de la Mer Méditerranée. Recueil des Travaux de la Station marine d’Endoume 31:3–137

    Google Scholar 

  • Pierre C (1999) The oxygen and carbon isotope distribution in the Mediterranean water masses. Mar Geol 153:41–55

    Article  Google Scholar 

  • Pomerol C (1973) Ere Cénozoïque. Doin, Paris

    Google Scholar 

  • Prothero DR (1994) The Eocene-Oligocene transition. Paradise lost. Columbia University Press, New York

    Google Scholar 

  • Purton L, Brasier M (1997) Gastropod carbonate δ18O and δ13C values record strong seasonal productivity and stratification shifts during the late Eocene in England. Geology 25:871–874

    Article  Google Scholar 

  • Purton LMA, Brasier MD (1999) Life span and habitat insights from δ18O and δ13C data from Nummulites and Venericardia, Hampshire basin, UK. Geology 27:711–714

    Article  Google Scholar 

  • Quaggiotto E, Mellini A (2008) Catalogo aggiornato dei molluschi fossili eocenici di San Giovanni Ilarione (Verona–Italia settentrionale) Prima parte: Mollusca, Gastropoda. Studi e Ricerche, Ass Amici Mus, Museo Civico “G. Zannato” 15:41–58

    Google Scholar 

  • Richardson CA, Collis SA, Ekaratne K, Dare P, Key D (1993) The age determination and growth rate of the European flat oyster, Ostrea edulis in British waters determined from acetate peels of umbo growth lines. ICES J Mar Sci 50:493–500

    Article  Google Scholar 

  • Romanek CS, Grossman EL, Morse JW (1992) Carbon isotopic fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate. Geochim Cosmochim Acta 56:419–430

    Article  Google Scholar 

  • Schmidt GA (1999) Forward modeling of carbonate proxy data from planktonic Foraminifera using oxygen isotope tracers in a global ocean model. Paleoceanography 14:482–498

    Article  Google Scholar 

  • Seward D (1978) Palaeosalinities and palaeotemperatures from carbon and oxygen isotopes of carbonate shells in three Quaternary formations, Wanganui Basin, New Zealand. Palaeogeogr Palaeoclimatol Palaeoecol 23:47–55

    Article  Google Scholar 

  • Shackleton NJ, Kennett JP (1975) Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analysis in DSDP site 277, 279 and 28. Initial Rep Deep Sea Drill Proj 29:743–755

    Google Scholar 

  • Smith AB, McGowan AJ (2011) The ties linking rock and fossil records and why they are important for paleobiodiversity studies. Geol Soc Lond Spec Publ 358:1–7

    Article  Google Scholar 

  • Squires RL, Saul LR (2007) Paleocene pareorine turritellid gastropods from the Pacific slope of North America. The Nautilus 121:1–16

    Google Scholar 

  • Stenzel HB (1971) Oysters. In: Moore RC (ed) Treatise in invertebrate paleontology, Mollusca 6, Bivalvia (3). Geological Society of America/Boulder, University of Kansas Press/Lawrence

  • Stevens KF, Vella P (1981) Palaeoclimatic interpretation of stable isotope ratios in molluscan fossils from middle Pleistocene marine strata, Wanganui, New Zealand. Palaeogeogr Palaeoclimatol Palaeoecol 34:257–265

    Article  Google Scholar 

  • Surge DM, Lohmann KC, Dettman DL (2001) Controls on isotopic chemistry of the American oyster, Crassostrea virginica: implications for growth patterns. Palaeogeogr Palaeoclimatol Palaeoecol 172:283–296

    Article  Google Scholar 

  • Surge DM, Lohmann KC, Goodfriend GA (2003) Reconstructing estuarine conditions: oyster shells as recorders of environmental change, Southwest Florida. Estuar Coast Shelf Sci 57:737–756

    Article  Google Scholar 

  • Tarutani T, Clayton RN, Mayeda TK (1969) The effect of polymorphism and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water. Geochim Cosmochim Acta 33:987–996

    Article  Google Scholar 

  • Thiry M (1989) Geochemical evolution and paleoenvironments of the Eocene continental deposits in the Paris Basin. Palaeogeogr Palaeoclimatol Palaeoecol 70:153–163

    Article  Google Scholar 

  • Titschack J, Zuschin M, Spötl C, Baal C (2010) The giant oyster Hyotissa hyotis from the northern Red Sea as a decadal-scale archive for seasonal environmental fluctuations in coral reef habitats. Coral Reefs 29:1061–1075

    Article  Google Scholar 

  • Tivollier J, Létolle R (1968) Résultat et interprétation d’analyses isotopiques de faunes malacologiques du Tertiaire parisien. Bur Rech Géol Min Mém 58:347–358

    Google Scholar 

  • Tripati AK, Zachos J, Marincovich L, Bice K (2001) Late Paleocene Arctic coastal inferred from molluscan stable and radiogenic isotope ratios. Palaeogeogr Palaeoclimatol Palaeoecol 170:101–113

    Article  Google Scholar 

  • Tripati AK, Backman J, Elderfield H, Ferretti P (2005) Eocene bipolar glaciation associated with global carbon cycle changes. Nature 436:341–346

    Article  Google Scholar 

  • Tripati AK, Eagle RA, Morton A, Dowdeswell JA, Atkinson KL, Bahé Y, Dawber CF, Khadun E, Shaw RMH, Shorttle O, Thanabalasundaram L (2008) Evidence for glaciation in the Northern Hemisphere back to 44 Ma from ice-rafted debris in the Greenland Sea. Earth Planet Sci Lett 265:112–122

    Article  Google Scholar 

  • Tripati AK, Allmon WD, Sampson DE (2009) Possible evidence for a large decrease in seawater strontium/calcium ratios and strontium concentrations during the Cenozoic. Earth Planet Sci Lett 282:122–130

    Article  Google Scholar 

  • Waite R, Strasser A (2011) A comparison of Recent and fossil large, high-spired gastropods and their environments: the Nopparat Thara tidal Xat in Krabi, South Thailand, versus the Swiss Kimmeridgian carbonate platform. Facies 57:223–248

    Article  Google Scholar 

  • Watters GT (1993) Some aspects of the functional morphology of the shell of infaunal bivalves (Mollusca). Malacologia 35:315–342

    Google Scholar 

  • Wefer G, Berger WH (1991) Isotope paleontology: growth and composition of extant calcareous species. Mar Geol 100:207–248

    Article  Google Scholar 

  • Yonge CM (1946) On the habits of Turritella communis Risso. J Mar Biol Assoc 21:687–704

    Google Scholar 

  • Yonge CM (1969) Functional morphology and evolution within the Carditacea (Bivalvia). Malacol Soc Lond Proc 38:493–527

    Google Scholar 

  • Zachos JC, Quinn TM, Salamy K (1996) High resolution (104 yr) deep-sea foraminiferal stable isotope records of the Eocene-Oligocene climate transition. Paleoceanography 11:251–266

    Article  Google Scholar 

  • Zachos JC, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to Present. Science 292:686–693

    Article  Google Scholar 

  • Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283

    Article  Google Scholar 

  • Zuschin M, Oliver PG (2003) Bivalves and bivalve habitats in the northern Red Sea. The Northern Bay of Safaga (Red Sea, Egypt): an actuopalaeontological approach. VI. Bivalvia. Naturhistorisches Museum, Wien

    Google Scholar 

  • Zuschin M, Janssen R, Baal C (2009) Gastropods and their habitats from the northern Red Sea (Egypt, Safaga). Part 1: Patellogastropoda, Vetigastropoda and Cycloneritimorpha. Ann Naturh Mus Wien Ser A 111:73–158

    Google Scholar 

  • Zuschin M, Harzhauzer M, Mandic O (2011) Disentangling palaeodiversity signal from a biased sedimentary record: an example from Early to Middle Miocene of Central Paratethys Sea. In: McGowan AJ, Smith AB (eds) Comparing the geological and fossil records: Implications for biodiversity studies. Geological Society of London Special Publications, vol 358, pp 123–139

Download references

Acknowledgments

The authors would like to thank P. Loubry and C. Lemzaouda (MNHN, Paris), who have taken the photos under UV light, and N. Labourdette for the stable isotopes analyses. This paper is a contribution to the PPF “MNHN Etat et structure phylogénétique de la biodiversité actuelle et fossile” (director: Ph. Janvier). This study was funded by a PhD grant from the French Ministry of Research and Education to Damien Huyghe and by funds from UPMC and CNRS to UMR 7193. We would like to thank the editor F. T. Fürsich, M. Zuschin and an anonymous reviewer for their constructive comments, and Martin Pickford (Collège de France, Paris) for correcting the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Huyghe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 83 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huyghe, D., Merle, D., Lartaud, F. et al. Middle Lutetian climate in the Paris Basin: implications for a marine hotspot of paleobiodiversity. Facies 58, 587–604 (2012). https://doi.org/10.1007/s10347-012-0307-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-012-0307-3

Keywords

Navigation