Skip to main content
Log in

Timing and progression of the end-Guadalupian crisis in the Fars province (Dalan Formation, Kuh-e Gakhum, Iran) constrained by foraminifers and other carbonate microfossils

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

The Middle-to-Upper Permian in the Kuh-e Gakhum anticline (southeastern Iran) has rarely been studied due to its structural complexity and the difficult access. Rich Permian fusulinid assemblages varying in age from Wordian to Changhsingian were found in a thick carbonate succession corresponding to the Dalan Formation. Three new species of foraminifers are described and a new biostratigraphic framework including five biozones is proposed. One of these, described and defined for the first time in the Dalan Formation, is based on the presence of Praedunbarula simplicissima n. gen. n. sp. When compared to the fossil content of existing bioprovinces, the floro-faunal biota of the Dalan Formation shows an affinity with Central and Western Tethys. A mass extinction of fusulinids and small foraminifers (70%) occurred concomitantly with the onset of a relative sea-level fall. This event led to a change in the carbonate factories from biologically induced carbonate production to ooid-rich chemically induced precipitation. The morphology of the platform at the Guadalupian/Lopingian transition evolves from a bioclastic ramp to a shelf. This transition is also characterized by a major sequence boundary and morphological anomalies in foraminifers. Therefore, as the regression and the changes in floro-faunal contents have been observed at the Guadalupian/Lopingian boundary, the extinction event is considered as end-Guadalupian. It is followed by a Lopingian transgression yielding renewed foraminiferal assemblages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Accordi B (1956) Calcareous algae from the Upper Permian of the Dolomites (Italy), with stratigraphy of the “Bellerophon-zone”. J Paleontol Soc India 1:75–84

    Google Scholar 

  • Ali JR, Thompson GM, Song XY, Wang YL (2002) Emeishan Basalts (SW China) and the ‘end-Guadalupian’ crisis: magnetobiostratigraphic constraints. J Geol Soc 159:21–29

    Article  Google Scholar 

  • Alsharhan AS, Nairn AEM (1995) Stratigraphy and sedimentology of the Permian in the Arabian basin and adjacent areas: a critical review. In: Scholle PA, Peryt TM, Ulmer-Scholle DS (eds) The Permian of northern Pangea, vol 2. Springer, Berlin Heidelberg New York, pp 187–214

    Chapter  Google Scholar 

  • Altiner D (1978) Trois nouvelles espèces du genre Hemigordius (Foraminifère) du Permien supérieur de Turquie (Taurus oriental). Notes du Laboratoire de Paléontologie de l'Université de Genève 2:27–30

  • Altiner D, Özcan-Altiner S, Koçyigit A (2000) Late Permian foraminiferal biofacies belts in Turkey: palaeogeographic and tectonic implications. In: Bozkurt E, Winchester JA, Piper JDA (eds) Tectonics and magmatism in Turkey and the surrounding area, vol 173. Geol Soc Lond Spec Publ 173, pp 83–96

  • Anderson FW (1964) Aschemonella longicaudata sp. nov. from the Permian of Derbyshire, England. Geol Mag 101:44–47

    Article  Google Scholar 

  • Angiolini L, Balini M, Garzanti E, Nicora A, Tintori A, Crasquin S, Muttoni G (2003) Permian climatic and paleogeographic changes in northern Gondwana: the Khuff Formation of Interior Oman. Palaeogeogr Palaeoclimatol Palaeoecol 191:269–300

    Article  Google Scholar 

  • Baghbani D (1988) Shanita zone and its biostratigraphic significance in south and southwest Iran. In: Benthos’1986, Geneva, p 37

  • Baghbani D (1993) The Permian sequence in the Abadeh region, central Iran. ESRI New Series 9 B:7–22

  • Baghbani D (1997) Correlation charts of selected Permian strata from Iran. Permophiles 30:24–26

    Google Scholar 

  • Berberian M, King GCP (1981) Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18:210–265

    Article  Google Scholar 

  • Berczi-Makk A (1992) Midian (Upper Permian) Foraminifera from the large Mihalovits quarry at Nagyvisnyo (North-Hungary). Acta Geol Hung 35:27–38

    Google Scholar 

  • Beydoun ZR (1991) Arabian plate hydrocarbon, geology and potential—a plate tectonic approach. AAPG Stud Geol 33:77

    Google Scholar 

  • Bohrmann G, Abelmann A, Gersonde R, Hubberten H, Kuhn G (1994) Pure siliceous ooze, a diagenetic environment for early chert formation. Geology 22:207–210

    Article  Google Scholar 

  • Bond DGP, Wignall PB (2009) Latitudinal selectivity of foraminifer extinctions during the Late Guadalupian crisis. Paleobiology 35:465–483

    Article  Google Scholar 

  • Bourillot R, Vennin E, Kolodka C, Rouchy JM, Caruso A, Durlet C, Chaix C, Rommevaux V (2009) The role of topography and erosion in the development and architecture of shallow-water coral bioherms (Tortonian-Messinian, Cabo de Gata, SE Spain). Palaeogeogr Palaeoclimatol Palaeoecol 281:92–114

    Article  Google Scholar 

  • Bourillot R, Vennin E, Rouchy JM, Durlet C, Rommevaux V, Kolodka C, Knap F (2010) Structure and evolution of a Messinian mixed carbonate-siliciclastic platform: the role of evaporites (Sorbas Basin, southeast Spain). Sedimentology 57:477–512

    Article  Google Scholar 

  • Bozorgnia F (1973) Paleozoic foraminiferal biostratigraphy of central and east Alborz Mountains, Iran, vol 4. National Iranian Oil Company, Geological Laboratories, Tehran

    Google Scholar 

  • Brady HB (1876) A monograph of Carboniferous and Permian foraminifera (the genus Fusulina excepted). Palaeontol Soc, Lond, p 166

    Book  Google Scholar 

  • Brayard A, Bucher H, Escarguel G, Fluteau F, Bourquin S, Galfetti T (2006) The Early Triassic ammonoid recovery: Paleoclimatic significance of diversity gradients. Palaeogeogr Palaeoclimatol Palaeoecol 239:374–395

    Article  Google Scholar 

  • Brayard A, Escarguel G, Bucher H, Monnet C, Bruhwiler T, Goudemand N, Galfetti T, Guex J (2009) Good genes and good luck: ammonoid diversity and the end-Permian mass extinction. Science 325:1118–1121

    Article  Google Scholar 

  • Brönnimann P, Whittaker JE, Zaninetti L (1978) Shanita a new pillared miliolacean foraminifer from the Late Permian of Burma and Thailand. Riv Ital Paleontol Stratigr 84:63–92

    Google Scholar 

  • Kotlyar GV, Zakharov YD, Kropacheva GS, Pronina GP, Chediya IO, Burago, VI (1989) Pozdnepermskii etap evolyutsii organicheskogo mira, Midinskii yarus SSSR (Evolution of the latest Permian biota, Midian regional stage of the USSR). Leningrad “Nauka”, Leningradskoe Otdelennie, pp 1–177

  • Burchette TP, Wright VP (1992) Carbonate ramp depositional systems. Sediment Geol 79:3–57

    Article  Google Scholar 

  • Bykova EV, Polenova EN (1955) Foraminifery i radiolyarii devona Volgo-Ural’skoy oblasti i tsental’nogo devonskogo polya i ikh znacheniye dlya stratigrafii, vol 87. Trudy VNIGRI 141 pp

  • Cavalier-Smith T (2002) The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 52:297–354

    Google Scholar 

  • Chediya IO, Bogolovskaya MF, Davydov VI, Dmitriev VY (1986) Fuzulinidy i ammonoidei v stratotipe Kubergandinskogo yarusa (Yugo-vostochnyy Pamir). Akad Nauk SSSR, Ezhegod Vses Paleont Obsch 29:28–53

    Google Scholar 

  • Chen S (1956) The Fusulinidae of South China. Palaeontologica Sinica 140:1–71

    Google Scholar 

  • Choi DR (1970) On some Permian fusulinids from Iwaizaki N.E. Japan. Hokkaido University. J Fac Sci 4:313–325

    Google Scholar 

  • Chuvashov BI, Anfimov AL (2007) On the taxonomy of the Paleozoic red algae of the family Ungdarellaceae. Paleontol J 41:95–102

    Article  Google Scholar 

  • Ciry R (1948) Un nouveau Fusulinidé permien: Dunbarula mathieui. Bull Scient de Bourgogne 11:103–110

    Google Scholar 

  • Courtillot V, Jaupart C, Manighetti I, Tapponier P, Besse J (1999) On causal links between flood basalts and continental breakup. Earth Planet Sci Lett 166:177–195

    Article  Google Scholar 

  • d’Orbigny A (1826) Tableau méthodique de la classe des Céphalopodes. Ann Sci Nat 7:245–314

    Google Scholar 

  • Dain LG (1953) Turneiellidy. In: Dain LG, Grozdilova LP (ed) Iskopaemye foraminifery SSSR: Turneiellidy e Arkhedistsidy, vol 74. Trudy VNIGRI, pp 7–63

  • Deprat J (1915) Les Fusulinidés calcaires carbonifériens et permiens du Tonkin, du Laos et du Nord-Annam, vol 4. Etude des Fusulinidés de Chine et d’Indochine et classification des calcaires à Fusulinés. Serv. Geol. de l’Indochine, pp 1–30

  • Douglass RC, Nestell MK (1974) The Permian fusulinid genus Pseudoreichelina from the Pequop Formation, Spruce Mountains, Elko County, Nevada. J Paleontol 48:1170–1173

    Google Scholar 

  • Ehrenberg CG (1843) Beobachtungen über die Verbreitung des jetzt wirkenden kleinsten organischen Lebens in Asien, Australien und Afrika und über die vorherrschende Bildung auch des Oolithkalkes der Juraformation aus kleinen polythalamischen Thieren. Bericht über die zu Bekanntmachung geeigneten Verhandlungen der königlichen preussischen Akademie der Wissenschaften zu Berlin, pp 160-167

  • Eliott GF (1958) Fossil microproblematica from the Middle East. Micropaleontology 4:419–428

    Article  Google Scholar 

  • Eliott GF (1968) Permian to Paleocene calcareous algae (Dasycadaceae) of the Middle East. Bull British Mus (Natural History) Geol Suppl 4:1–111

    Google Scholar 

  • Elliott GF (1955) The Permian calcareous alga Gymnocodium. Micropaleontology 1:83–90

    Article  Google Scholar 

  • Endo R, Kanuma M (1954) Stratigraphical and paleontological studies of the later Paleozoic calcareous algae in Japan, VII. Geology of the Mino Mountain Land and southern part of Hida Plateau, with description of the algal remains found in those districts. Sci Rep Saitama Univ 1:177–205

    Google Scholar 

  • Erwin DH (1994) The Permo-Triassic extinction. Nature 367:231–236

    Article  Google Scholar 

  • Flügel E (1966) Algen aus dem Perm der Karnischen Alpen. Carinthia II 25:3–76

    Google Scholar 

  • Flügel E (2004) Microfacies of carbonate rocks, analysis, interpretation and application. Springer, Berlin Heidelberg New York, 984 pp

  • Fursenko AV (1958) Osnovnye etapy razvitiya faun foraminifer v geologischskom prohlom. Trudy Instituta Geologicheskikh Nauk, Akademiya Nauk Beloruskoi SSR 1:10–29

    Google Scholar 

  • Gaetani M, Angiolini L, Ueno K, Nicora A, Stephenson M, Sciunnach D, Rettori R, Price GD, Sabouri J (2009) Pennsylvanian-Early Triassic stratigraphy in the Alborz Mountains (Iran). In: Brunet MF, Wilmsen M, Granath JW (ed) South Caspian to Central Iran Basins. Geol Soc Spec Publ Lond 312:79–128

  • Gaillot J (2006) The Late Permian-Early Triassic Khuff Formation in the Middle East: sequence biostratigraphy and palaeoenvironments by means of calcareous algae and foraminifers. PhD Thesis, University of Lille

  • Gaillot J, Vachard D (2007) The Khuff Formation (Middle East) and time-equivalents in Turkey and South China: biostratigraphy from Capitanian to Changhsingian times (Permian), new foraminiferal taxa, and palaeogeographical implications. Coloquios de Paleontología 57:37–223

    Google Scholar 

  • Galfetti T, Hochuli PA, Brayard A, Bucher H, Weissert H, Vigran JO (2007) Smithian-Spathian boundary event: evidence for global climatic change in the wake of the end-Permian biotic crisis. Geology 35:291–294

    Article  Google Scholar 

  • Galloway JJ, Harlton BH (1928) Some Pennsylvania Foraminifera of Oklahoma, with special reference to the genus Orobias. J Paleontol 2:338–357

    Google Scholar 

  • Geinitz HB, Gutbier A (1848) Die Versteinerungen des Zechsteingebirges und Rothliegenden. Arnold, Dresden

  • Ghavidel-Syooki M, Winchester-Seeto T (2004) Chitinozoan biostratigraphy and palaeogeography of lower Silurian strata (Sarchahan Formation) in the Zagros Basin of southern Iran. Memoirs of the Association of Australasian Palaeontologists 29:161–182

    Google Scholar 

  • Gomez-Espinosa C, Vachard D, Buitrón-Sánchez B, Almazán-Vazquez E, Mendoza-Madera C (2008) Pennsylvanian fusulinids and calcareous algae from Sonora (Northwestern Mexico), and their biostratigraphic and palaeobiogeographic implications. Compte Rendu Palevol 7:259–268

    Article  Google Scholar 

  • Grozdilova LP (1956) Miliolidy verkhneartinskikh otlozhenii nizhnei Permi zapadnogo sklona Urala. Trudy VNIGRI 98:521–528

    Google Scholar 

  • Gubler J (1935) Les fusulinidés du Permien de l’Indochine, leur structure et leur classification, vol 11. Mémoires de la Société Géologique de France

  • Guvenç T (1966) Présence d’algues calcaires dans le Permien des Taurus occidentaux (Turquie) description d’un nouveau genre et de quelques nouvelles espèces. Rev Micropaléontol 9:43–49

    Google Scholar 

  • Hallam A, Wignall PB (1997) Mass extinctions and their aftermath. Oxford University Press, Oxford

    Google Scholar 

  • Hallam A, Wignall PB (1999) Mass extinctions and sea-level changes. Earth Sci Rev 48:217–250

    Article  Google Scholar 

  • Han JX (1980) Fusulinida. In: Shenyang Institute of Geology and Mineral Resources (ed) Palaeontological Atlas of Northeast China. Geol Publ House Beijing, vol 1, pp 18–95

  • Han JX (1985) Early Permian of the Nahanhada range. Acta Paleontologica Sinica 24:680–687

    Google Scholar 

  • Homann W (1972) Unter- und tief-mittelpermische Kalkalgen aus dem Rattendorfer Schichten, dem Trogkofel Kalk und dem Treßdorfer Kalk der Karnischen Alpen (Österreich). Senckenb Lethaea 53:135–313

    Google Scholar 

  • Insalaco E, Virgone A, Courme B, Gaillot J, Kamali M, Moallemi A, Lotfpour M, Monibi S (2006) Upper Dalan Member and Kangan Formation between the Zagros Mountains and offshore Fars, Iran: depositional system, biostratigraphy and stratigraphic architecture. GeoArabia 11:75–176

    Google Scholar 

  • Isozaki Y, Kawahata H, Minoshima K (2007) The Capitanian (Permian) Kamura cooling event: the beginning of the Paleozoic-Mesozoic transition. Palaeoword 16:16–30

    Article  Google Scholar 

  • James NP (1997) The cool-water carbonate depositional realm. In: James NP, Clarke JAD (eds) Cool-water carbonates. SEPM Spec Publ 56, pp 1-20

  • Jenny C, Guex J (2005) Pathological development in response to environmental stress in some latest Permian foraminifers: preliminary report. Bull Soc vaud Sc nat 89:171–184

    Google Scholar 

  • Jenny C, Stampfli G (2000) Permian palaeogeography of the Tethyan Realm. Permophiles 37:24–33

    Google Scholar 

  • Jenny C, Guex J, Stampfli G, Richoz S (2009) Micropaleontology of some Permian localities in the Tethyan realm-Inventory of foraminifers and calcareous algae, biostratigraphy and paleogeography. Mémoires de Géologie Lausanne 48:1–135

    Google Scholar 

  • Jenny-Deshusses C (1983) Paraglobivalvulina mira Reitlinger (foraminifère). Précisions morphologiques et application stratigraphique dans le Permien supérieur d’Iran. Rev Micropaléontol 25:265–272

    Google Scholar 

  • Jin YG, Zhu ZL, Mei SL (1994) The Maokouan-Lopingian boundary sequences in South China. Palaeoworld 4:138–152

    Google Scholar 

  • Johnson B (1981) Microfaunal biostratigraphy of the Dalan Formation (Permian) Zagros Basin, southwest Iran. In: Neale JW, Brasier MD (eds) Microfossils from Recent and Fossil Shelf Seas. British Micropalaeontological Society Series, Ellis Horwood, Chichester, pp 52–61

  • Johnson HD, Baldwin CT (1997) Shallow clastic seas. In: Reading HG (ed) Sedimentary environments: processes, facies and stratigraphy, 3rd edn. Blackwell, Oxford, pp 233–280

    Google Scholar 

  • Kanmera K (1954) Fusulinids from the upper Permian Kuma formation, southern Kyushu, Japan with special reference to the fusulinid zone in the Upper Permian of Japan. Fac Sci Kyushu Univ Mem Ser D 4:1–38

    Google Scholar 

  • Karavaeva NI, Nestell GP (2007) Permian foraminifers of the Omolon Massif, northeastern Siberia, Russia. Micropaleontology 53:161–211

    Article  Google Scholar 

  • Karpinsky A (1909) Einige problematische Fossilien aus Japan. Verhandlungen russische mineralogische Gesellschaft St. Petersburg 2:257–272

    Google Scholar 

  • Kidder DL, Worsley TR (2004) Causes and consequences of extreme Permo-Triassic warming to globally equable climate and relation to the Permo-Triassic extinction and recovery. Palaeogeogr Palaeoclimatol Palaeoecol 203:207–237

    Article  Google Scholar 

  • Kobayashi F (1986) Middle Permian foraminifers of the Gozenyama Formation, southern Kwanto Mountains, Japan. Bull Natl Sci Mus Ser C (Geol Paleontol) 12:131–163

    Google Scholar 

  • Kobayashi F (1988) Middle Permian foraminifers of the Omi Limestone, Central Japan. Bull Natl Sci Mus Ser C (Geol Paleontol) 14:1–35

    Google Scholar 

  • Kobayashi F (1997) Upper Permian foraminifers from the Iwai-Kanyo area, West Tokyo, Japan. J Foraminifer Res 27:186–195

    Article  Google Scholar 

  • Kobayashi F (1999) Tethyan uppermost Permian (Dzhulfian and Dorashamian) foraminiferal faunas and their paleogeographic and tectonics implications. Palaeogeogr Palaeoclimatol Palaeoecol 150:279–307

    Article  Google Scholar 

  • Kobayashi F (2004) Late Permian foraminifers from the limestone block in the southern Chichibu Terrane of west Shikoku, SW Japan. J Paleontol 78:62–70

    Article  Google Scholar 

  • Kobayashi F (2005) Permian foraminifers from the Itsukaichi-Ome area, West Tokyo, Japan. J Paleontol 79:413–432

    Article  Google Scholar 

  • Kobayashi F (2006a) Middle Permian foraminifers of the Izuru and Nabeyama formations in the Kuzu area, central Japan, part 2. Schubertellid and ozawainellid fusulinoideans, and non-fusulinoideans foraminifers. Paleontol Res 10:61–67

    Article  Google Scholar 

  • Kobayashi F (2006b) Middle Permian foraminifers of Kaize, southern part of the Saku Basin, Nagano prefecture, central Japan. Paleontol Res 10:179–194

    Article  Google Scholar 

  • Kobayashi F (2007a) Foraminiferal fauna and lithofacies of Middle Permian limestone blocks in the middle course of Kuma River (Osakama), southern margin of the Chichibu Terrane in west Kyushu, Japan. Paleontol Res 11:337–347

    Article  Google Scholar 

  • Kobayashi F (2007b) Late Middle Permian (Capitanian) foraminifers in the Mikata area, Hyogo, with special reference to plasticity deformation of their test and their paleobiogeographic affinity with South China—Late Paleozoic and Early Mesozoic foraminifers of Hyogo, Japan, Part 5. Paleontol Res 11:17–28

    Article  Google Scholar 

  • Kobayashi F (2007c) Moscovian to Capitanian foraminifers contained in limestone breccias of debris avalanche deposits of the Upper Cretaceous Ise Formation in Irino, NE of Tatsuno, Hyogo—Late Paleozoic and Early Mesozoic foraminifers of Hyogo, Japan, Part 8. Paleontol Res 12:1–15

    Google Scholar 

  • Kobayashi F, Ishii KI (2003) Paleobiogeographic analysis of Yahtashian to Midian fusulinacean faunas of the Surmaq Formation in the Abadeh region, central Iran. J Foraminifer Res 33:155–165

    Article  Google Scholar 

  • Kochansky-Dévidé V, Herak M (1960) On the Carboniferous and Permian Dasycladaceae of Yugoslavia. Geoloski Vjesnik 13:65–94

    Google Scholar 

  • Konert G, Afifi AM, Al-Hajiri SA, Droste HJ (2001) Paleozoic stratigraphy and hydrocarbon habitat of the Arabian Plate. GeoArabia 6:407–442

    Google Scholar 

  • Koop WJ, Stoneley A (1982) Subsidence history of the Middle East Zagros basin, Permian to recent. Roy Soc Lond Philos Trans 305:149–168

    Article  Google Scholar 

  • Kotlyar GV, Zakharov YD, Kochirkevich BV, Kropacheva GS, Rostovtscev KO, Chediya IO, Vuks GP, Guseva EA (1984) Pozdnepermskii etap evolyutsii organicheskogo mira, Dzhulfinskii i Dorashamskii yarusy SSSR (Evolution of the latest Permian biota, Dzhulfian and Dorashamian stages of the USSR). Akademiya Nauk SSSR, Dalnevostochnyi Nauchnyi Tsentr, Biologo-Pochvennyi Institut, pp 1–200

  • Kotlyar G, Belyansky GC, Burago VI, Nikitina AP, Zakharov YD, Zhuralev AV (2006) South Primorye, Far East Russia-A key region for global Permian correlation. J Asian Earth Sci 26:280–293

    Article  Google Scholar 

  • Köylüoglu M, Altiner D (1989) Micropaléontologie (foraminifères) et biostratigraphie du Permien supérieur de la région d’Hakkari (SE Turquie). Rev Paléobiol 8:467–503

    Google Scholar 

  • Lai XL, Wang W, Wignall PB, Bond DPG, Jiang HS, Ali JR, John EH, Sun YD (2008) Palaeoenvironemental change during the end-Guadalupian (Permian) mass extinction in Sichuan, China. Palaeogeogr Palaeoclimatol Palaeoecol 269:78–93

    Article  Google Scholar 

  • Lange E (1925) Eine mittelpermische Fauna von Guguk Bulat (Padanger Oberland, Sumatra). Verhandelingen van het geologisch mijnbouwkunding Genootschap voor Nederland en Koloniën, geologisch serie 7:213–295

    Google Scholar 

  • Lee JS (1927) Fusulinidae of North China. Palaeontologica Sinica, Series B 4:1–172

  • Leven EYa (2003) The Permian stratigraphy and fusulinids of the Tethys. Riv Ital Paleontol Stratigr 109:267–280

    Google Scholar 

  • Leven EYa, Bogoslovskaya MF (2006) The Roadian Stage of the Permian and problems of its global correlation. Stratigr Geol Correl 14:164–173

    Article  Google Scholar 

  • Leven EYa, Gorgij NM (2008) Bolorian and Kubergandian Stages of the Permian in the Sanandaj–Sirjan Zone of Iran. Stratigr Geol Correl 16:455–466

    Article  Google Scholar 

  • Leven EYa, Korchagin OA (2001) Permian-Triassic biotic crisis and foraminifers. Stratigr Geol Correl 19:364–372

    Google Scholar 

  • Leven EYa, Okay AI (1996) Foraminifera from the exotic Permo-Carboniferous limestone blocks in the Karakaya complex, north western Turkey. Riv Ital Paleontol Stratigr 102:139–174

    Google Scholar 

  • Leven EYa, Ozkan R (2004) New Permian fusulinids from Turkey and some problems of their biogeography. Stratigr Geol Correl 12:333–346

    Google Scholar 

  • Leven EYa, Gaetani M, Schroeder S (2007) New findings of Permian fusulinids and corals from western Karakorum and E Hindu Kush (Pakistan). Riv Ital Paleontol Stratigr 113:151–166

    Google Scholar 

  • Lin JX (1978) Carboniferous and Permian Foraminiferida. In: Hubei Institute of Geological Sciences and Geological Bureaus of Henan, Hubei, Hunan, Guandong, and Guangxi (eds) Paleontological atlas of Central South China micropaleontological volume. Geological Publishing House, Beijing, pp 10–43

  • Lin JX (1984) Biostratigraphy of the Yangtze Gorge area, (3) Late Paleozoic era. Museum Changzhou, Changzhou City, Jiangsu Province, Geological Publishing House, pp 110–117

  • Lipina OA (1949) Melkie foraminifery pogrebennykh massivov Bashkirii. Akademiya Nauk SSSR, Trudy Instituta Geologicheskikh Nauk 105:198–235

    Google Scholar 

  • Loeblich AR, Tappan H (1964) Sarcodina, chiefly “Thecamoebians” and Foraminiferida. In: Moore RC (ed) Treatise of Invertebrate Paleontology, Part C, Protista 2, vol 1. The Geological Society of America and the University of Kansas Press, Lawrence, pp 1–900

  • Lokke DH (1964) Pennsylvanian occurrences of Komia? sp. in southwestern United States. J Paleontol 38:415–416

    Google Scholar 

  • Lys M (1994) Les Fusulinida d’Asie orientale décrits par J. Deprat: révision et mise en valeur de la collection-type. Cahiers de Micropaléontologie 9:1–57

    Google Scholar 

  • Lys M, Colchen M, Bassoullet JP, Marcoux J, Mascle G (1980) La biozone à Colaniella parva du Permien supérieur et sa microfaune dans le bloc calcaire exotique de Lamayuru, Himalaya du Ladakh. Rev Micropaléontol 23:76–108

    Google Scholar 

  • Lys M, Bouyx E, Boulin J (1990) La biozone à Cancellina (Permien moyen, Kubergandien) dans le versant méridional de l’Hindou Kouch (Afghanistan). Facies 23:37–56

    Article  Google Scholar 

  • Malakhova NP (1965) Foraminifera from the Permian deposits of the eastern slope of the Urals. Akad Nauk SSSR, Ural Filial, Trudy Instit Geol 74:155–173

    Google Scholar 

  • Mamet B, Pinard S (1992) Note sur la taxonomie des petits foraminifères du Paléozoïque supérieur. Bulletin de la Société belge de Géologie 99:373–398

    Google Scholar 

  • Mamet BL, Stemmerik L (2000) Carboniferous algal microflora, Kap Jungersen and Foldedal Formations, Holm Land and Amdrup Land, eastern North Greenland. Geol Greenl Surv Bull 187:79–101

    Google Scholar 

  • Maslov VP (1929) Mikroskopicheskie vodorosli kamennougolnykh Donetskogo basseina (Microscopic algae from the Carboniferous limestones of the Donets Basin). Izvestii Geologicheskogo Komiteta 48:115–138

    Google Scholar 

  • Maslov VP (1956) Iskopaemye izvestkovye vodorosli SSSR Trudy Instituta Geologicheskikh Nauk. Akademiya Nauk SSSR 160:1–301

    Google Scholar 

  • Maxwell WD (1992) Permian and Early Triassic extinction of non-marine tetrapods. Palaeontology 35:571–583

    Google Scholar 

  • Mikhalevich VI (1980) Sistematika i evolyutsiya foraminifer v svete novykhh dannykh po ikh litologii i ultastrukture Trudy Zoologicheskogo Instituta. Akademiya Nauk SSSR 94:42–61

    Google Scholar 

  • Miklukho-Maklay AD (1953) K sistematike semeitsva Archaediscidae. Ezhegodnik Vsesoyuznogo Paleontologischeskogo Obshchestva (1948–1953) 14:127–131

  • Miklukho-Maklay KV (1954) Foraminifery verkhnepermskikh otlozhenii severnogo Kavkaza. Trudy VSEGEI, Gosgeoltekhizdat 1:1–163

    Google Scholar 

  • Miklukho-Maklay AD (1963) Verkhniy Paleozoy Sredney Azii Izdateld Leningrad Univ, pp 1–328

  • Molinaro M, Guezou JC, Leturmy P, Eshraghi SA, Frizon de Lamotte D (2004) The origin of changes in structural style across the Bandar Abbas syntaxis, SE Zagros (Iran). Mar Petrol Geol 21:735–752

    Article  Google Scholar 

  • Montenat C, de Lapparent AF, Lys M, Termier H, Termier G, Vachard D (1977) La transgression permienne et son substrat éocambrien dans le Jebel Akhdar, montagnes d’Oman, Péninsule Arabique. Annales de la Société géologique du Nord 96:239–258

    Google Scholar 

  • Nestell GP, Nestell MK (2006) Middle Permian (Late Guadalupian) foraminifers from Dark Canyon, Guadalupe Mountains, New Mexico. Micropaleontology 52:1–50

    Article  Google Scholar 

  • Ogg JG, Ogg G, Gradstein FM (2008) The Concise Geologic Time Scale. Cambridge University Press, Cambridge

    Google Scholar 

  • Ota A, Isozaki Y (2006) Fusuline biotic turnover across the Guadalupian-Lopingian (Middle-Upper Permian) boundary in mid-oceanic carbonate buildups: Biostratigraphy of accreted limestone in Japan. J Asian Earth Sci 26:353–368

    Article  Google Scholar 

  • Ozawa Y (1927) Stratigraphical studies of the Fusulina limestones of Akasaka, Province of Mino. Imp Univ Tokyo J 2:121–164

    Google Scholar 

  • Ozawa T, Nishiwaki N (1992) Permian Tethyan Biota and Sedimentary Facies of the Akasaka Limestone Group. Field Trip Guidebook of International Geological Congress, pp 189–195

  • Pasini M (1985) Biostratigrafia con i foraminiferi del limite formazione a Bellerophon formazione di Werfen fra Recoaro e La Val Badia (Alpi Meridionali). Riv Ital Paleontol Stratigr 90:481–510

    Google Scholar 

  • Pia J (1920) Siphoneae verticillatae vom Karbon bis zur Kreide. Abhandlungen der zoologisch-botanischen Gesellschaft in Wien 11:1–163

    Google Scholar 

  • Pia J (1937) Die wichtigsten Kalkalgen des Jungpaläozoikums und ihre geologische Bedeutung. Compte Rendu du 2e Congrès Avancement Etudes de Stratigraphie du Carbonifère, Heerlen, 1935 2:765–856

  • Pronina-Nestell GP, Nestell MK (2001) Late Changhsingian foraminifers of the northwestern Caucasus. Micropaleontology 47:205–234

    Article  Google Scholar 

  • Raup DM (1979) Size of the Permo-Triassic bottleneck and its evolutionary implications. Science 206:217–218

    Article  Google Scholar 

  • Rauzer-Chernousova DM, Fursenko AV (1959) Osnovy Paleontologii, Obshchaya chast Prosteyshie. Akademiya Nauk SSSR, Dalnevostochnyi Nauchnyi Tsentr, Biologo-Pochvennyi Institut, pp 1–368

  • Rauzer-Chernousova DM, Bensh FP, Vdovenko MV, Gibshman NB, Leven EY, Lipina OA, Reitlinger EA, Solovieva MN, Chediya IO (1996) Spravochnik po sistematike foraminifer Paleozoya; Endothyroidy, Fuzulinoidy. Rossiiskaya Akademiya Nauk, Geologicheskii Institut, Moskva “Nauka”, pp 1–207

  • Reichel M (1945) Sur un Miliolidé nouveau du Permien de l’île de Chypre. Verhandlungen der Naturfoschenden Gesellschaft in Basel 56:521–530

    Google Scholar 

  • Reichel M (1946) Sur quelques foraminifères nouveaux du Permien méditerranéen. Eclogae Geologicae Helvetiae 38:524–560

    Google Scholar 

  • Reitlinger EA (1950) Foraminifery srednekamennougolnykh otlozhenii tsentralnoi chasti Russkoi platformy (isklyuchaya semeistvo Fusulinidae). Akademiya Nauk SSSR, Trudy Instituta Geologicheskikh Nauk, 126. Geologichevskaya seriya 47:1–126

    Google Scholar 

  • Reitlinger EA (1965) Razvitie foraminifer v pozdnepermskuyu i rannetriasovuyu epokhi na territorii Zakavkazya. Voprosy Mikropaleontologii 9:45–70

    Google Scholar 

  • Retallack GJ, Veevers JJ, Morante R (1996) Global coal gap between Permian–Triassic extinction and Middle Triassic recovery of peat-forming plants. Geol Soc Am Bull 108:195–207

    Article  Google Scholar 

  • Ricou LE (1974) L’étude géologique de la région de Neyriz (Zagros iranien) et l’évolution structurale des Zagnides. PhD Thesis, Université de Paris-sud, Orsay

  • Ritter SM, Morris TH (1997) Oldest and lowest latitudinal occurrence of Palaeoaplysina; Middle Pennsylvanian Ely Limestone, Burbank Hills, Utah. Palaios 12:397–401

    Article  Google Scholar 

  • Ross CA, Ross JRP (1985) Late Paleozoic depositional sequences are synchronous and world wide. Geology 13:194–197

    Article  Google Scholar 

  • Schubert RJ (1909) Zur Geologie des österreichischen Velebit. Jahrbuch der geologischen Reichanstalt 58:345–386

    Google Scholar 

  • Sellier De Civrieux JM, Dessauvagie TFJ (1965) Reclassification de quelques Nodosariidae, particulièrement du Permien au Lias. Maden Tetkik ve Arama Enstitüsü Yayinlarindan (MTA) 124:1–178

    Google Scholar 

  • Sepehr M, Cosgrove JW (2004) Structural framework of the Zagros Fold-Thrust Belt, Iran. Mar Petrol Geol 21:829–843

    Article  Google Scholar 

  • Setudehnia A (1978) The Mesozoic sequence south-west Iran and adjacent areas. J Petrol Geol 1:3–42

    Article  Google Scholar 

  • Sharland PR, Archer R, Casey DM, Davies RB, Hall SH, Heward AP, Horbury AD, Simmon MD (2001) Arabian Plate sequence stratigraphy. GeoArabia Special Publication, vol 2. Oriental Press, Manama

    Google Scholar 

  • Sheng JC (1955) Some fusulinids from Changhsing Limestone. Acta Paleontologica Sinica 3:287–308

    Google Scholar 

  • Sheng JC (1958) Some fusulinids from the Maokou Limestone of Chinghai Province, northwestern China. Acta Paleontologica Sinica 6:268–291

    Google Scholar 

  • Sheng JC (1992) Development of fusuline foraminifers in China. In: Studies in benthic foraminifera, proceedings of the fourth symposium on Benthic Foraminifera Benthos’90, Sendaï, Japan. Tokai University Press, pp 11–22

  • Sherkati S, Letouzey J (2004) Variation of structural style and basin evolution in the central Zagros (Izeh zone and Dezful Embayment), Iran. Mar Petrol Geol 21:535–554

    Article  Google Scholar 

  • Skinner JW (1931) Primitive fusulinids of the Mid-Continent region. J Paleontol 5:253–259

    Google Scholar 

  • Skinner JW (1969) Permian foraminifera from Turkey. Univ Kansas Paleontol Contrib Pap 36:1–14

    Google Scholar 

  • Skinner JW, Wilde GL (1966) Permian fusulinids from Pacific Northwest and Alaska. Univ Kansas Paleontol Contrib Pap 4:1–64

    Google Scholar 

  • Spandel E (1898) Die Foraminiferen des deutschen Zechsteins und ein zweifelhaftes mikroskopisches Fossil ebendaher. Verlags-Inst. “General Anzeiger”

  • Stampfli GM, Borel GD (2004) The TRANSMED transects in space and time: constraints on the paleotectonic evolution of the Mediterranean domain. In: Cavazza W, Roure F, Spakman W, Stampfli GM, Ziegler P (eds) The TRANSMED Atlas: the Mediterranean region from crust to mantle. Springer, Berlin, Heidelberg, New York, pp 53–80

    Chapter  Google Scholar 

  • Stanley SM, Yang XN (1994) A double mass extinction at the end of the Paleozoic Era. Science 266:1340–1344

    Article  Google Scholar 

  • Stöcklin J (1968) Structural history and tectonics of Iran: a review. AAPG Bull 52:1229–1258

    Google Scholar 

  • Szabo F, Kheradpir A (1978) Permian and Triassic stratigraphy, Zagros Basin, Southwest Iran. J Petrol Geol 1:57–82

    Article  Google Scholar 

  • Taraz H, Golshani F, Nakazawa K, Shimizu D, Bando Y, Ishii KI, Murata M, Okimura Y, Sakagami S, Nakamura K, Tokuoka T (Iranian-Japanese Research Group) (1981) The Permian and the Lower Triassic systems in Abadeh region, central Iran, Series Geology Mineralogy 47. Memoirs of the Faculty of Science. Kyoto University

  • Thompson ML, Wheeler H, Danner WR (1950) Middle and Upper Permian fusulinids of Washington and British Columbia. Cushman Lab Foram Res Contrib 1:46–63

    Google Scholar 

  • Tien ND (1979) Etude micropaléontologique (Foraminifères) de matériaux du Permien du Cambodge. Thèse de 3ème Cycle, Université de Paris Sud, Orsay

  • Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell Science, Oxford, 496 pp

    Book  Google Scholar 

  • Ueno K (1992a) Permian foraminifers from the Takakurayama Group of the southern Abukuma Mountains, northeast Japan. Trans Proc Paleontol Japan 168:1265–1295

    Google Scholar 

  • Ueno K (1992b) Permian aberrant Fusulinaceans from the Akiyoshi Limestone Group, southwest Japan. Sci Rep Inst Geosci Univ Tsukuba B 13:1–13

    Google Scholar 

  • Ueno K (2003) The Permian fusulinoidean faunas of the Sibumasu and Baoshan blocks: their implications for the paleogeographic and paleoclimatologic reconstruction of the Cimmerian Continent Palaeogeography, Palaeoclimatology. Palaeoecology 193:1–24

    Article  Google Scholar 

  • Ueno K, Sakagami S (1993) Middle Permian foraminifers from Ban Nam Suai Tha Sa-At, Changwat Loei, northeast Thailand. Trans Proc Paleontol Soc Jpn 172:277–291

    Google Scholar 

  • Vachard D (1980) Téthys et Gondwana au Paléozoïque supérieur; les données afghanes : biostratigraphie, micropaléontologie, paléogéographie, vol 2. Documents et Travaux IGAL

  • Vachard D (1991) Parathuramminides et moravamminides (Microproblematica) de l’Emsien supérieur de la Formation Moniello (Cordillères Cantabriques, Espagne). Rev Paléobiol 10:255–299

    Google Scholar 

  • Vachard D, Beckary S (1991) Algues et foraminifères bachkiriens des coal balls de la Mine Rosario (Truebano, Léon, Espagne). Rev Paléobiol 10:315–357

    Google Scholar 

  • Vachard D, Montenat C (1981) Biostratigraphie, micropaléontologie et paléogéographie du Permien de la région de Tezak (Montagnes Centrales d’Afghanistan). Palaeontographica B 178:1–88

    Google Scholar 

  • Vachard D, Clift P, Decrouez D (1993) Une association à Pseudodunbarula (fusulinoïde) du Permien supérieur (Djoulfien) remaniée dans le Jurassique d’Argolide (Péloponèse, Grèce). Rev Paléobiol 12:217–242

    Google Scholar 

  • Vachard D, Hauser M, Martini R, Zaninetti L, Matter A, Peters T (2002) Middle Permian (Midian) foraminiferal assemblages from the Batain Plain (Eastern Oman): their significance to Neotethyan paleogeography. J Foraminifer Res 32:155–172

    Article  Google Scholar 

  • Vachard D, Gaillot J, Vaslet D, Le Nindre YM (2005) Foraminifers and algae from the Khuff Formation (Late Middle Permian-Early Triassic) of central Saudi Arabia. GeoArabia 10:137–186

    Google Scholar 

  • Vaslet D, Le Nindre YM, Vachard D, Broutin J, Crasquin-Soleau S, Berthelin M, Gaillot J, Halaward M, Al-Husseini M (2005) The Permian-Triassic Khuff Formation of central Saudi Arabia. GeoArabia 10:77–134

    Google Scholar 

  • Vaziri SH, Yao A, Kuwahara K (2005) Lithofacies and microbiofacies (foraminifers and radiolarians) of the Permian Sequence in the Shalamzar area, Central Alborz, North Iran. J Geosci 48:39–69

    Google Scholar 

  • Vennin E (1997) Architecture sédimentaire des Bioconstructions permo-carbonifères de l’Oural Méridional (Russie), vol 27. Société Géologique du Nord

  • Vennin E (2007) Artinskian bryozoan-phylloid algal-Shamovella bioherms, Russia. In: Vennin E, Aretz M, Boulvain F, Munnecke A (eds) Facies from Palaeozoic reefs and bioaccumulations, vol 195. Mémoires du Muséum national d’Histoire naturelle, Paris, pp 299–301

    Google Scholar 

  • Vennin E, Rouchy JM, Chaix C, Blanc-Valleron MM, Caruso A, Rommevaux V (2004) Paleoecological constraints on reef-coral morphologies in the Tortonian-Early Messinian of the Lorca Basin, SE Spain. Palaeogeogr Palaeoclimatol Palaeoecol 213:163–185

    Google Scholar 

  • Wang JH, Tang Y (1986) Fusulinids from Chihsia Formation of Legwu district in Tonglu County, Zhejiang. Acta Micropalaeontologica Sinica 1986-01

  • Wang XD, Sugiyama T (2000) Diversity and extinction patterns of Permian coral faunas of China. Lethaia 33:285–294

    Article  Google Scholar 

  • Wang W, Kano A, Okumura T, Ma Y, Matsumoto R, Matsuda N, Ueno K, Chen X, Kakuwa Y, Hosein M, Gharaie M, Ilkhchi MR (2007) Isotopic chemostratigraphy of the microbialite-bearing Permian-Triassic boundary section in the Zagros Mountains, Iran. Chem Geol 244:708–714

    Article  Google Scholar 

  • Weidlich O (2002) Permian reefs re-examined: extrinsic control mechanisms of gradual and abrupt changes during 40 my of reef evolution. Geobios 35 Mémoire Spécial 24:287–294

    Article  Google Scholar 

  • Weidlich O, Bernecker M (2003) Supersequence and composite sequence carbonate platform growth: Permian and Triassic outcrop data of the Arabian platform and Neo-Tethys. Sediment Geol 160:87–116

    Article  Google Scholar 

  • Weidlich O, Bernecker M (2007) Differential severity of Permian-Triassic environmental changes on Tethyan shallow-water carbonate platforms. Glob Planet Change 55:209–233

    Article  Google Scholar 

  • Wignall PB (2001) Large igneous provinces and mass extinctions. Earth Sci Rev 53:1–33

    Article  Google Scholar 

  • Wignall PB, Védrine S, Bond DPG, Wang W, Lai XL, Ali JR, Jiang HD (2009) Facies analysis and sea-level change at the Guadalupian-Lopingian Global Stratotype (Laibin, South China), and its bearing on the end-Guadalupian mass extinction. J Geol Soc 166:655–666

    Article  Google Scholar 

  • Wilde GL (2001) End Permian; end fusulinaceans. In: Hills LV, Henderson CM, Bamber EW (eds) Carboniferous and Permian of the world, vol 19. Canadian Society of Petroleum Geologists Memoir, Calgary, pp 616–629

    Google Scholar 

  • Yang XN, Liu JR, Zhu LM, Shi GJ (2004) Extinction processes and patterns of Middle Permian fusulinaceans in southwest China. Lethaia 37:139–147

    Article  Google Scholar 

  • Yang XN, Liu JR, Zhu LM, Shi GJ (2005) Early Permian bioevent in the fusulinacean fauna of South China. Lethaia 38:1–16

    Article  Google Scholar 

  • Zadorozhnyi VM (1987) Foraminifery i biostratigrafiya devona Zapadno-Sibirskoi plity i ieio skeadchatogo obramleniya. Trudy Instituta Geologii i Geofiiki 680:1–126

    Google Scholar 

  • Zamanzadeh SM, Amini A, Rahimpour-Bonab H (2009) Eogenetic dolomite cementation in Lower Permian reservoir sandstones southern Zagros, Iran. Geol J 4:501–525

    Google Scholar 

  • Zaninetti L, Bronnimann P, Huber H, Moshtaghian A (1978) Microfacies et microfaunes du Permien au Jurassique au Kuh-e Gahkum, Sud-Zagros, Iran. Rivista Italiana Paleontologia 84:865–896

    Google Scholar 

  • Ziegler MA (2001) Late Permian to Holocene paleofacies evolution of the Arabian Plate and its hydrocarbon occurrences. GeoArabia 6:445–504

    Google Scholar 

Download references

Acknowledgments

We gratefully thank GDF SUEZ Exploration-Production Department and the Exploration Directorate of the National Iranian Oil Company (NIOC) for permission to publish this work, for funding of the study, and for granting access to facilities and materials. We are grateful to Raphaël Bourillot (EGID, Université de Bordeaux III) and Arnaud Brayard (Université de Bourgogne, Dijon) for constructive discussions during the drafting of the manuscript. The authors greatly thank Fumio Kobayashi for his hard work and very constructive review and the FACIES editor André Freiwald for helpful suggestions. We also thank Didier Quesne, Nicolas Rolland, Afshin Asghari, and Arsalan Bakhshi for their collaboration during the fieldtrips. This work is a contribution to the “Systèmes, Environnements et Dynamique Sédimentaires” team of the Biogéosciences Laboratory (UMR 5561) and for the FRE 3298 Géosystèmes of the University of Lille. We thank Carmela Chateau-Smith (Université de Bourgogne, Dijon) for checking our English and Philippe Blanc (Lithologie Bourgogne, Dijon) for the realization of thin-sections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Kolodka.

Appendix: Systematic paleontology (by D. Vachard)

Appendix: Systematic paleontology (by D. Vachard)

In this section, only new taxa are described: Epimonella salva n. gen. n. sp.; Spireitlina gakhumensis n. sp.; Praedunbarula simplicissima n. gen. n. sp.; Praedunbarula simplex n. gen. n. comb.

Phylum Foraminifera d’Orbigny 1826 nomen translat. Cavalier-Smith 2002.

Class Fusulinita Fursenko 1958 nomen translat. Gaillot and Vachard 2007.

Order Parathuramminida Bykova in Bykova and Polenova 1955, nomen translat. Mikhalevich 1980.

Superfamily Parathuramminoidea Bykova in Bykova and Polenova 1955, nomen translat. Mikhalevich 1980.

Family Irregularinidae Zadorozhnyi and Yuferev in Zadorozhnyi 1987 nomen translat. Vachard 1991.

Genus Epimonella n. gen.

Type species:

Epimonella salva n. gen. n. sp.

Etymology:

From Epi: almost and monella ending of Aschemonella, homeomorph genus among the Textulariata.

Diagnosis:

A representative of the Parathuramminida is characterized by elongate chambers and large pseudo-septa. The test is multilocular and uniserial and presents a planispiral to trochospiral coiling. The microgranular wall is dark colored and thin. The last chambers show the development of a proboscis-like terminated by a simple aperture, which is notable at each growth stage. Most of the specimens present spines on their last chamber (between 1 and 3).

Composition:

Aschemonella longicaudata Anderson 1964; Aschemonella sp. sensu Nestell and Nestell (2006); Microproblematica sensu Tien (1979).

Comparison:

Our specimens differ from Aschemonella, relatively similar in shape, by the wall structures. Aschemonella is described by Loeblich and Tappan (1964, p. C214) as “finely to coarsely agglutinated, firmly cemented”, whereas Epimonella n. gen. has a dark wall, probably microgranular and no porcelaneous, but never agglutinated. It is never entirely free; and sometimes, it remains attached. As another difference, the aperture system appears more complex. It differs from Troglotella by the large necks and their aperture. Moreover, Troglotella is theoretically a Textulariata (i.e., an agglutinate foraminifer).

Occurrence

Epimonella is recorded in Northern England (Anderson 1964). Microproblematica sensu Tien (1979) was described in Late Midian series of Cambodia. Aschemonella sp. sensu Nestell and Nestell (2006) is present in the Capitanian of Texas.

Stratigraphic range:

Wordian-Capitanian.

Epimonella salva gen. nov. sp. nov. (Fig. 9 a–e)

Etymology:

Latin salvus = well preserved; female genus.

Type locality

Kuh-e Gakhum (Onshore Fars, Iran).

Type strata:

Epimonella salva is observed in the Lower Dalan and Nar Members which are Guadalupian (Wordian-Capitanian) in age.

Holotype:

Fig. 9c.

Material:

19 thin-sections.

Diagnosis:

As for the genus.

Description:

The microgranular wall is made of three to eight chambers. All the specimens described here present a weak size and shape variability. Indeed the height mean is 0.72 mm, ranging between 0.592 and 0.851 mm. The width (always smaller than its height) of Epimonella salva varies between 0.172 and 0.282 mm. As already observed in biseriamminid families, some specimens can present a larger last chamber (Fig. 9c). Epimonella salva is commonly find-free but could probably have lived attached to gymnocodiacean algae, due to the large amount of Permocalculus spp. observed in association.

Occurrence:

The genus E. salva is present in the Capitanian strata of Cambodia (Tien 1979) and Texas (Nestell and Nestell 2006). In the Kuh-e Gakhum area, E. salva is observed in the Guadalupian series and more precisely in both Praedunbarula and Chusenella zone.

Superfamily Tournayelloidea Dain 1953 nomen translat. Dain in Rauzer-Chernousova and Fursenko 1959.

Family Haplophragmellidae Reitlinger in Rauzer-Chernousova and Fursenko 1959 nomen translat. Lipina in Rauzer-Chernousova et al. 1996

Genus Spireitlina Vachard in Vachard and Beckary 1991

Type species:

Palaeospiroplectamina conspecta Reitlinger 1950

Description:

The initial stage consists of a uniserial planispiral coiling (endothyroid). This juvenile evolves to a terminal/adult stage uncoiled, straight, and biserial. The Spireitlina septa are twisted in their middle part. The inner part of the septa is cylindrical without sutures. Finally, the microgranular wall is brownish to black colored.

Occurrence:

Middle Pennsylvanian (Moscovian)—Middle Permian (Capitanian); cosmopolite.

Spireitlina gakhumensis sp. nov. (Fig. 9 f)

Etymology:

Geographic terminology, from Kuh-e Gakhum (Iran).

Type locality:

Kuh-e Gakhum (Iran).

Type level:

Guadalupian, Late Capitanian.

Holotype:

Fig. 9 f

Material:

1 thin-section

Diagnosis:

A Spireitlina with a uniserial juvenarium presenting a trochospiral coiling. The adult part is biserial and straight.

Occurrence:

Late Capitanian of Kuh-e Gakhum (Fars, Iran).

Order Fusulinida Fursenko 1958

Superfamily Schubertelloidea Skinner 1931 nomen translat. Vachard et al. 1993.

Family Palaeofusulinidae Miklukho-Maklay 1963 nomen translat. Chediya in Rauzer-Chernousova et al. 1996.

Subfamily Dunbarulinae Vachard et al. 1993.

Genus Praedunbarula n. gen.

Type species:

Praedunbarula simplicissima n. sp.

Etymology:

A genus that phylogenetically precedes Dunbarula.

Diagnosis:

This dunbarulin is characterized by a poorly developed juvenarium. The septa exhibit few pores. In the polar regions, the septa are weakly fluted. Praedunbarula are mainly distinguishable by the weakly developed chomata. The test of Praedunbarula is ellipsoidal to inflated fusiform, with slightly convex lateral banks and peaked poles. The shape of the weakly individualized juvenarium is discoidal to lenticular-subcarinate. The septal folding, in the polar regions, does not show variation in the shape and density of the septal loops (always rounded and more or less numerous). Septal pores are poorly developed, but seem to be present in all the species. Chomata and tunnel are faint to distinct.

Composition:

Praedunbarula simplicissima n. gen. n. sp.; Schubertella simplex Lange 1925, S. Schubertella adducta Han 1980; S. agilis Han 1980; S. jilinica Han 1980; S. plana Lange 1925; Dunbarula pseudosimplex Sheng 1958; Schubertella simplex Lange 1925; S. umbilicata Lin 1984; S. sp. sensu Gubler (1935, pl. 2, fig. 3); Mesoschubertella sp. sensu Kobayashi 1988; Dunbarula simplex Han 1980; D. oviformis Kobayashi 2006a; D. nana sensu Gaillot (2006, p. 49–50, pl. I.17, fig. 13 ?, pl. I.43, figs. 18–19, pl. III.23, fig. 12; pl. VI.4, figs. 12–22); Nanligella simplex (Lange 1925) sensu Gaillot 2006; N. minima Deprat 1915 sensu Gaillot 2006; Dunbarula? sp. sensu Kanmera (1954, p. 7–8, pl. 3, figs. 8 ?, 9–11, 20); Dunbarula ex gr. nana sensu Kotlyar et al. 1989, Neofusulinella? mimima Deprat 1915 (see discussion in Lys 1994); Schubertella sp. A sensu Ueno (1992a, fig. 4. 9); S. sp. B sensu Ueno (1992a, fig. 9. 7–9); S.? sp. C sensu Ueno (1992a, fig. 9. 11–12); Schubertella cf. simplex sensu Ueno (1992a, fig. 4–10); Codonofusiella sp. sensu Kotlyar et al. (1984, pl. 6, 25–28) and sensu Berczi-Makk (1992, pl. 1, figs. 7a, 8, pl. 11, fig. 5); Staffellidae sp. sensu Berczi-Makk (1992, pl. 1, figs. 7a, 8, pl. 11, fig. 3); Neofusulinella? pseudogiraudi (Sheng 1958) sensu Ueno and Sakagami (1993, fig. 5.11–13); Dunbarula? sp. sensu Ueno and Sakagami (1993, fig. 5.14); Nanlingella? sp. sensu Kobayashi (2004, figs. 6.10–6.14); Dunbarula sp. A sensu Kobayashi (2007a, fig. 3.51–3.52); Dunbarula sp. A sensu Kobayashi (2007b, pl. 2, fig. 19–20). Dunbarula mathieui Ciry 1948 sensu Vaziri et al. (2005, pl.5, fig. 9).

Occurrence:

Praedunbarula is relatively common in most of the Tethyan areas. It is present in the Early Bolorian (=Kungurian) series of northeast Japan (see Ueno 1992a) and Laos (Lys 1994). Praedunbarula oviformis (Kobayashi 2006a) n. comb. occurs in the Kubergandian (=Roadian) and Early Murgabian (=Early Wordian) of Akasaka (Japan). P. pseudosimplex (Sheng 1958) n. comb. and P. simplex (Lange 1925) n. comb. are relatively frequent in the Middle-Late Wordian (F. Kobayashi, pers. comm., October 2010). Praedunbarula is also described on the Early Murgabian (=Wordian) strata of northeastern Thailand (Ueno and Sakagami 1993) and of the Chichibu Terrane of Japan (Kobayashi 2006a). The Capitanian appears to be largest spatial distribution of the genus: in Hyogo, Japan (Kobayashi 2007b-c), in Kyushu, Japan (Kobayashi 2007a), Cambodia (Gubler 1935), southeastern Pamir (Kotlyar et al. 1989), Sicily (Skinner and Wilde 1966), northeastern Japan (Ueno 1992a). The genus is also observed in the Wuchiapingian series of Transcaucasia (Kotlyar et al. 1984) and the Lopingian of Japan (Kobayashi 2004). The new genus is hugely developed in both Guadalupian and Lopingian series but especially abundant during the Late Wordian-Early Capitanian of the Kuh-e Gakhum area and more largely in the Fars region.

Stratigraphic range:

Kungurian-Changhsingian.

Praedunbarula simplicissima gen. nov. sp. nov. (Fig. 9h; j–m)

Holotype:

Fig. 9h

Type material:

These 54 specimens of this new species are observable on 45 thin-sections.

Etymology:

Latin: simplex = simple; simplicissimus, the simplest.

Type locality:

Kuh-e Gakhum (Iran).

Type level:

P. simplicissima is observed in the Guadalupian–Lopingian series (Dalan Formation) of the Kuh-e Gakhum section. It is particularly abundant before the next Chusenella zone and corresponds to the Late Wordian interval.

Description:

The test is very small and presents an inflated fusiform shape with bluntly rounded poles. Mature specimens have four to five whorls. Specimens preserved show a huge variability in shape. Indeed, the diameter (D) of P. simplicissima varies from 0.25 to 0.8 mm, while the width (w) is relatively the same, 0.38 mm. The first two whorls are subcarinate in shape and coil askew to later ones. They are succeeded by more rapidly expanding inflated fusiform whorls. The weakly differentiated proloculus have a minute and spherical coiling. Even if the wall of P. simplicissima is relatively thick, the septa are comparatively thin. The thickness of the wall seems to increase gradually during the growth and thickens more in the last whorl. This wall is composed of a dark-colored thin tectum and a lower translucent and yellowish protheca. Septal pores are present in outer whorls. The septal folding in the polar regions is weak. Tunnel is narrow, bordered by distinct chomata and presents simple aperture.

Comparison:

The new genus corresponds to a transitional form between Schubertella and true Dunbarula. It differs from Schubertella silvestrii Skinner and Wilde 1966 by the presence of more fluted septa and elongate test (w/D = 1.7 against 1.12–1.47). Moreover S. silvestrii is probably a species of Praedunbarula because of the septal folding (for example in pl. 4, fig. 7; Skinner and Wilde 1966) and septal pores (in figs. 7 and 9), and the increasing in thickness of the wall (pl. 5, fig. 10). It differs from Neofusulinella giraudi Deprat 1915 by smaller size, less whorls, less convex sides, and thinner wall. This species might be confused with Dunbarula nana Chediya, 1986. P. simplicissima differs from Dunbarula nana Chediya, 1986 by its very minute size and less-developed septal folding. Dunbarula nana, Chediya, 1986 sensu Lys in various papers for example 1900, pl. 7, fig. 7 is a Neofusulinella giraudi Deprat 1915. This new species differs from Dunbarula pusilla Skinner 1969 by its weakly folded septa and the large juvenarium; from Dunbarula simplex (Lange 1925) by more complicated texture of the juvenarium and mode of septal folding; and from Dunbarula oviformis Kobayashi 2004 by lower last whorl and weakly folded septa. It differs from Dunbarula cascadensis (Thompson, Wheeler and Danner 1950) emend. Kobayashi (2006b) by a “primitive” septal folding and the size of the juvenarium. This species (or group of species including D. kitakamiensis Choi 1970 and D. laudoni Skinner and Wilde 1966 (see discussion in Kobayashi 1986, 2006b)) is probably transitional form between Dunbarula and Schubertella. Dunbarula planata Ueno 1992a is also possibly transitional one between them.

Praedunbarula simplex (Lange 1925) nov. comb. (Fig. 9 i; n-q)

Description:

The test is very small and subellipsoidal. Lateral slopes are distinctly convex and the poles are broadly rounded. The juvenarium appears small too. Chomata are well defined.

Occurrence:

Capitanian (Midian) of Guguk Bulat, Sumatra (Lange 1925). Permian of Akasaka and Omi Limestones (Japan; Ozawa 1927; Kobayashi 1988). Wordian—Capitanian (Early Murgabian-Midian) of Japan (Kobayashi 2007a, c). Wordian (Murgabian) of Abadeh (Iran) (Kobayashi and Ishii 2003). Artinskian of Beitepe, Turkey (Leven and Ozkan 2004). Chihsian-Middle Permian of South China (Lin 1984; Han 1985; Wang and Tang 1986). Late Midian of Kuh-e Gakhum and Hazro (eastern Taurus, Turkey) (Gaillot 2006). Changhsingian of Kuh-e Surmeh (Zagros; Gaillot 2006). Artinskian of Koryakia of N.W. Turkey (Leven and Okay 1996). Wuchiapingian of Nesen Fm. (Alborz, N. Iran; Gaetani et al. 2009).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolodka, C., Vennin, E., Vachard, D. et al. Timing and progression of the end-Guadalupian crisis in the Fars province (Dalan Formation, Kuh-e Gakhum, Iran) constrained by foraminifers and other carbonate microfossils. Facies 58, 131–153 (2012). https://doi.org/10.1007/s10347-011-0265-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-011-0265-1

Keywords

Navigation