Skip to main content
Log in

Spatial and numerical responses of Red Kites Milvus milvus to the Common Vole Microtus arvalis population outbreak in central Europe

  • Short Communication
  • Published:
European Journal of Wildlife Research Aims and scope Submit manuscript

Abstract

Predator behaviour and population numbers can be determined by many factors such as prey availability, individual and habitat characteristics, and intraspecific or interspecific factors. Using satellite telemetry, we measured home range size in 3 individuals of Red Kites (Milvus milvus) in three consecutive winters to document the pattern of spatial responses to increasing availability of its dominant prey, the Common Vole (Microtus arvalis), in the Břeclav District, Czech Republic. Starting with winter 2017/2018, we found that the home range sizes decreased in winter 2018/2019 when the index of vole population density increased from 678 burrow entrances in autumn 2017 to 1414 burrow entrances per hectare in autumn 2018. Home range sizes did not change in winter 2019/2020 in spite of the further increase in vole population density up to 6673 entrances per hectare in autumn 2019. Based on censuses at 5 communal roosts in January 2018, 2019, and 2020, we documented the pattern of numerical responses to increasing availability of voles. Numbers of wintering Red Kites did not respond to growing vole densities until they reached the highest level in autumn 2019, suggesting that the response of wintering numbers was delayed by 1 year compared to that in home range. Our study thus provides empirical support for the spatial and numerical responses of Red Kites to prey availability and suggest that these responses may differ in sensitivity to increases in vole density, being triggered at different periods of the vole population cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Aebischer A (2019) Statut du milan royal dans les differents pays en Europe. Bulletion De Liaison Des Acteurs De La Sauvegarde Du Milan Royal En France 39:21

    Google Scholar 

  • Anděra M, Beneš B (2001) Atlas rozšíření savců v České republice. Předběžná verze IV. Hlodavci (Rodentia) – část 1. Křečkovití (Cricetidae), hrabošovití (Arvicolidae), plchovití (Gliridae). Národní muzeum, Praha

  • Baker JA, Brooks RJ (1981) Distribution patterns of raptors in relation to density of Meadow Voles. Condor 83:42–47

    Article  Google Scholar 

  • BirdLife International (2020) Milvus milvus. The IUCN Red List of Threatened Species 2020: e.T22695072A181651010. https://doi.org/10.2305/IUCN.UK.2020-3.RLTS.T22695072A181651010.en. Accessed 04 Jan 2021

  • Blanco JC, Hiraldo F, Heredia B (1990) Variations in the diet and foraging behaviour of a wintering Red Kite (Milvus milvus) population in response to changes in food availability. Ardeola 37:267–278

    Google Scholar 

  • Bryja J, Nesvatbová J, Heroldová M, Janová E, Losík J, Trebatická J, Tkadlec E (2005) Common Vole (Microtus arvalis) population sex ratio: biases and process variation. Can J Zool 83:1391–1399. https://doi.org/10.1139/Z05-133

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York, USA

    Google Scholar 

  • Butet A, Leroux ABA (2001) Effects of agriculture development on vole dynamics and conservation of Montagu’s harrier in western French wetlands. Biol Cons 100:289–295. https://doi.org/10.1016/S0006-3207(01)00033-7

    Article  Google Scholar 

  • Carter I, Grice P (2000) Studies of re-established Red Kites in England. Br Birds 93:304–322

    Google Scholar 

  • Garcia JT, Vinuela J, Sunyer C (1998) Geographic variation of the winter diet of the Red Kite Milvus milvus in the Iberian Peninsula. Ibis 140:302–309. https://doi.org/10.1111/j.1474-919X.1998.tb04393.x

    Article  Google Scholar 

  • Gilg O, Sittler B, Sabard B, Hurstel A, Sané R, Delattre P, Hanski I (2006) Functional and numerical responses of four lemming predators in high arctic Greenland. Oikos 113:193–216. https://doi.org/10.1111/j.2006.0030-1299.14125.x

    Article  Google Scholar 

  • Hayward MW, Hayward GJ, Druce DJ, Kerley GIH (2009) Do fences constrain predator movements on an evolutionary scale? Home range, food intake and movement patterns of large predators reintroduced to Addo Elephant National Park, South Africa. Biodivers Conserv 18:887–904. https://doi.org/10.1007/s10531-008-9452-y

    Article  Google Scholar 

  • Heredia B, Alonso JC, Hiraldo F (1991) Space and habitat use by Red Kites Milvus milvus during winter in the Guadalquivir marshes: a comparison between resident and wintering populations. Ibis 133:374–381. https://doi.org/10.1111/j.1474-919X.1991.tb04585.x

    Article  Google Scholar 

  • Hiraldo F, Heredia B, Alonso JC (1993) Communal roosting of wintering Red Kites Milvus milvus (Aves, Accipitridae): social feeding strategies for the exploitation of food resources. Ethology 93:117–124

    Article  Google Scholar 

  • Horák P (2013) Srovnání složení potravy luňáka hnědého (Milvus migrans) a luňáka červeného (Milvus milvus) na jižní Moravě v době výchovy mláďat. Crex 32:54–64

    Google Scholar 

  • Jacob J, Manson P, Barfknecht R, Fredricks T (2014) Common Vole (Microtus arvalis) ecology and management: implications for risk assessment of plant protection products. Pest Manag Sci 70:869–878. https://doi.org/10.1002/ps.3695

    Article  CAS  PubMed  Google Scholar 

  • Jacob J, Imholt Ch, Caminero-Saldaña C, Couval G, Giraudoux P, Herrero-Cófreces S, Horváth G, Luque-Larena JJ, Tkadlec E, Wymenga E (2020) Europe-wide outbreaks of Common Voles in 2019. J Pest Sci 93:703–709. https://doi.org/10.1007/s10340-020-01200-2

    Article  Google Scholar 

  • Jubete F (2011) Do chemical treatments have an effect against Common Voles? Inferences from a study on the diet of the Barn Owl and diurnal raptors. Galemys 23:91–98

    Google Scholar 

  • Korpimäki E, Norrdahl K (1991) Numerical and functional responses of Kestrels, Short-eared Owls, and Long-eared Owls to Vole densities. Ecology 72:814–826. https://doi.org/10.2307/1940584

    Article  Google Scholar 

  • Literák I, Horal D, Raab R, Matušík H, Vyhnal S, Rymešová D, Spakovszky P, Skartsi T, Poirazidis K, Zakkak S, Tomik A, Skyrpan M (2019a) Sympatric wintering of Red Kites and Black Kites in south-east Europe. Acta Zool Acad Sci Hung 65:381–398. https://doi.org/10.17109/AZH.65.4.381.2019

  • Literák I, Raab R, Vyhnal S, Spakovszky P, Matušík H, Schütz C (2019b) Wintering grounds and summer vagrancy of young Red Kites from central Europe on a continental scale. In Abstracts of the British Ornitologists’ Union 2019 Annual Conference “Tracking migration: drivers, challenges and consequences of seasonal movements.” University of Warwick, UK 48–49

  • Mackovčin P (2007) Chráněná území ČR IX: Brněnsko. AOPK ČR, Brno. Nachtigall W, Stubbe M, Herrmann S (2003) Aktionsraum und Habitatnutzung des Rotmilans (Milvus milvus) im Winter – eine telemetrische Studie im Nordharzvorland. J Ornithol 144:284–294

    Google Scholar 

  • Nachtigall W, Stubbe M, Herrmann S (2003) Aktionsraum und Habitatnutzung des Rotmilans (Milvus milvus) im Winter – eine telemetrische Studie im Nordharzvorland. J Ornithol 144:284–294

    Google Scholar 

  • Nemček V (2013) Movements of a juvenile red kite Milvus milvus in the border zone of Austria, Slovakia and the Czech Republic. Slovak Raptor J 7:43–48

    Article  Google Scholar 

  • Norrdahl K, Korpimäki E (2002) Seasonal changes in the numerical responses of predators to cyclic vole populations. Ecography 25:428–438. https://doi.org/10.1034/j.1600-0587.2002.250405.x

    Article  Google Scholar 

  • Pavluvčík P, Poprach K, Machar I, Losík J, Gouveia A, Tkadlec E (2015) Barn owl productivity response to variability of vole populations. PLoS One 10:12. https://doi.org/10.1371/journal.pone.0145851

    Article  CAS  Google Scholar 

  • Pfeiffer T, Meyburg B (2015) GPS tracking of Red Kites (Milvus milvus) reveals fledgling number is negatively correlated with home range size. J Ornithol 156:963–975. https://doi.org/10.1007/s10336-015-1230-5

    Article  Google Scholar 

  • Poulin RG, Wellicome TI, Todd LD (2001) Synchronous and delayed numerical responses of a predatory bird community to a vole outbreak on the Canadian prairies. J Raptor Res 35:288–295

    Google Scholar 

  • Rodgers AR, Kie JG, Wright D, Beyer HL, Carr AP (2015) HRT: home range tools for ArcGIS. Version 2.0. Ontario Ministry of Natural Resources and Forestry, Centre for Northern Forest Ecosystem Research, Thunder Bay, Ontario, Canada

  • Salamolard M, Butet A, Leroux A, Bretagnolle V (2000) Responses of an avian predator to variations in prey density at a temperate latitude. Ecology 81:2428–2441. https://doi.org/10.2307/177465

    Article  Google Scholar 

  • Schröpfer L (2008) Luňák červený (Milvus milvus) Haja červená Red kite. In: Cepák et al. (eds) Atlas migrace ptáků České a Slovenské republiky. Aventinum, Prague

  • Sunyer C, Viñuela J (1994) Variacion temporal en los habitos alimentarios del milano real durante la invernada en la Meseta Norte. Ardeola 41:161–167

    Google Scholar 

  • Škrábal H (2020) Zimování luňáků červených na jižní Moravě. Bachelor’s thesis, University of Veterinary and Pharmaceutical Sciences Brno

  • Tkadlec E, Stenseth NCh (2001) A new geographical gradient in vole population dynamics. Proceedings: Biol Sci 268:1547–1552

  • Tomik A, Ledinšćak J, Dvoržak D, Kralj J, Literák I, Matušik H, Vyhnal S, Horal D, Raab R, Spakovszky P, Steindl J (2019) Status of the Red Kite Milvus milvus in Croatia, based on telemetry research: spatiotemporal distribution and new breeding record. Larus 54:7–22. https://doi.org/10.21857/mjrl3uxnq9

  • ÚKZÚZ (2020) Ústřední kontrolní a zkušební ústav zemědělský. https://eagri.cz/public/web/ukzuz/portal. Accessed 25 Jan 2020

  • Van der Wal R, Zeng C, Heptinstall D, Ponnamperuma K, Mellish C, Ben S (2015) Automated data analysis to rapidly derive and communicate ecological insights from satellite-tag data: a case study of reintroduced red kites. Ambio 44:612–623. https://doi.org/10.1007/s13280-015-0711-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Wood SN (2017) Generalized additive models: an introduction with R (2nd edition). Chapman and Hall/CRC

Download references

Acknowledgements

We thank Péter Spakovszky who tagged the birds with telemetry loggers. We thank Petr Berka, Gašpar Čamlík, Manuel Denner, Pavel Forejtek, Johannes Laber, Marek Palička, Ján Svetlík, Vlasta Škorpíková, Pavel Štěpánek, and Pavel Trávníček who were local observers at communal roosts. We thank Connor Panter for providing comments regarding English editing.

Funding

This work was supported by Palacký University Olomouc (grant no. IGA_PRF_2021_014 awarded to E.T.) and by the University of Veterinary Sciences Brno (grant no. IGA 203/2021/FVHE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Dostál.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 338 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dostál, M., Tkadlec, E., Raab, R. et al. Spatial and numerical responses of Red Kites Milvus milvus to the Common Vole Microtus arvalis population outbreak in central Europe. Eur J Wildl Res 67, 84 (2021). https://doi.org/10.1007/s10344-021-01524-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10344-021-01524-z

Keywords

Navigation