Skip to main content

Advertisement

Log in

Biocontrol Potential of Trichoderma harzianum and Zinc Nanoparticles to Mitigate Gray Mold Disease of Tomato

Bioregulatorpotenzial von Trichoderma harzianum und Zink-Nanopartikeln zur Eindämmung von Grauschimmel bei Tomaten

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Botrytis cinerea is a destructive phytopathogenic ascomycete causing severe pre- and postharvest yield losses in tomato-growing areas worldwide. Due to fungicide resistance development in B. cinerea strains, its chemical control has become a serious challenge for tomato growers. In the present investigation, 47 fungal isolates were obtained and screened for their biocontrol potency against B. cinerea, and 12 isolates showed significant biocontrol efficacy. In 12 fungal bioagents, Trichoderma harzianum isolate Tr‑3, identified by internal transcribed spacer (ITS) region sequence analysis, significantly suppressed the in vitro mycelial growth of B. cinerea. Furthermore, different concentrations (10, 25, 50, and 100 ppm) of zinc nanoparticles (ZnO-NPs) demonstrated remarkable suppression of in vitro mycelial growth. At higher concentrations (100 ppm) of ZnO-NPs, 88% mycelial growth inhibition of the pathogen was recorded. Moreover, foliar applications of T. harzianum suspension and ZnO-NPs in the greenhouse provided a promising control of B. cinerea infection in tomato plants, and a significant reduction in disease severity (68.5 and 83.4%, respectively) was recorded. While the foliar applications attenuate disease intensity, a significant increase in plant biomass was also recorded, which demonstrated the plant growth-promoting potential of indigenous T. harzianum and ZnO-NPs. Additionally, the antioxidant and phytochemical analysis of treated tomato leaves demonstrated higher levels of catalase (CAT) and peroxidase (PO) activity in ZnO-NP-treated plants followed by T. harzianum-treated plants. Thus, these results suggested that ZnO-NPs and indigenous T. harzianum as biocontrol could suppress B. cinerea infection in the greenhouse, either directly or indirectly as resistance inducers. Therefore, ZnO-NPs and T. harzianum may be applied as an alternative to fungicides to alleviate gray mold disease in tomato caused by the resistance problems in B. cinerea.

Zusammenfassung

Botrytis cinerea ist ein zerstörerischer phytopathogener Ascomycet, der in Tomatenanbaugebieten weltweit schwere Ertragseinbußen vor und nach der Ernte verursacht. Aufgrund der Entwicklung von Fungizidresistenzen bei B.-cinerea-Stämmen ist seine chemische Bekämpfung zu einer ernsten Herausforderung für Tomatenanbauer geworden. In der vorliegenden Untersuchung wurden 47 Pilzisolate gewonnen und auf ihre Bioregulatorwirksamkeit gegen B.-cinerea-Stämme untersucht, wobei 12 Isolate eine signifikante Bioregulatorwirksamkeit zeigten. Von den 12 Pilz-Bioagenzien unterdrückte das Isolat Tr‑3 von Trichoderma harzianum, das durch ITS-Sequenzierung („internal transcribed spacer“) identifiziert wurde, das In-vitro-Myzelwachstum von B. cinerea erheblich. Außerdem zeigten verschiedene Konzentrationen (10, 25, 50 und 100 ppm) von Zink-Nanopartikeln (ZnO-NP) eine bemerkenswerte Unterdrückung des In-vitro-Myzelwachstums. Bei höheren Konzentrationen (100 ppm) von ZnO-NP wurde eine 88%ige Hemmung des Myzelwachstums des Erregers festgestellt. Die Blattanwendungen von T.-harzianum-Suspension und ZnO-NP im Gewächshaus führten zu einer vielversprechenden Eindämmung von B.-cinerea-Infektionen auf Tomatenpflanzen, und es wurde eine signifikante Reduzierung der Krankheitsschwere (68,5 % bzw. 83,4 %) festgestellt. Obwohl die Blattanwendungen die Krankheitsintensität abschwächten, wurde auch ein signifikanter Anstieg der Pflanzenbiomasse festgestellt, was das pflanzenwachstumsfördernde Potenzial von T. harzianum und ZnO-NP belegt. Darüber hinaus zeigte die antioxidative und phytochemische Analyse der behandelten Tomatenblätter eine höhere Aktivität von Katalase (CAT) und Peroxidase (PO) bei den mit ZnO-NP behandelten Pflanzen, gefolgt von den mit T. harzianum behandelten Pflanzen. Diese Ergebnisse deuten darauf hin, dass ZnO-NP und T. harzianum als Bioregulator die B.-cinerea-Infektion im Gewächshaus entweder direkt oder indirekt als Resistenzinduktoren unterdrücken können. Daher können sie als Fungizidalternative eingesetzt werden, um die Resistenzprobleme bei Grauschimmel an Tomaten durch B. cinerea zu lindern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

CAT:

Catalase

FRAC:

Fungicide Resistance Action Committee

ITS:

Internal transcribed spacer

PDA:

Potato dextrose agar

PO:

Peroxidase

ZnO-NPs:

Zinc oxide nanoparticles

References

  • Abdel-Gawad KM, Abdel-Mallek AY, Hussein NA, Abdel-Rahim IR (2021) Diversity of mycobiota associated with onion (Allium cepa L.) cultivated in Assiut, with a newly recorded fungal species to Egypt. J Microbiol Biotechnol Food Sci. https://doi.org/10.15414/jmbfs.2017.6.5.1145-1151

    Article  Google Scholar 

  • Abdel-Hafez SI, Nafady NA, Abdel-Rahim IR, Shaltout AM, Daròs JA, Mohamed MA (2016) Assessment of protein silver nanoparticles toxicity against pathogenic Alternaria solani. 3 Biotech 6(2):199

    Article  Google Scholar 

  • Abdel-Rahim IR, Abo-Elyousr KA (2018) Talaromyces pinophilus strain AUN‑1 as a novel mycoparasite of Botrytis cinerea, the pathogen of onion scape and umbel blights. Microbiol Res 212:1–9

    Article  Google Scholar 

  • Abo-Elyousr KAM, Sobhy IA, Ismail RA (2014) Isolation of Trichoderma and evaluation of their antagonistic potential against Alternaria porri. J Phytopathol 162:567–574

    Article  Google Scholar 

  • Arciniegas-Grijalba PA, Patin˜o-Portela MC, Mosquera-Sa’nchez LP, Guerrero-Vargas JA, Rodrı’guez-Pa’ez JE (2017) ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. Appl Nano Sci 7:225–224

    Article  CAS  Google Scholar 

  • Barakat RM, Al-Masri MI (2017) Effect of Trichoderma harzianum in Combination with Fungicides in Controlling Gray Mould Disease (Botrytis cinerea) of Strawberry. Am J Plant Sci 8:651–665

    Article  CAS  Google Scholar 

  • Bilesky-José B, Cintia M, Tais GC, Estefânia C, Lucas C, Renato G, Leonardo FF, de Lima R (2021) Biogenic α‑Fe2O3 nanoparticles enhance the biological activity of Trichoderma against the plant pathogen Sclerotinia sclerotiorum. ACS Sustainable Chem Eng 9(4):1669–1683

    Article  Google Scholar 

  • Bin L, Shida J, Huifang Z, Yucheng W, Zhihua L (2020) Isolation of Trichoderma in the rhizosphere soil of Syringa oblata from Harbin and their biocontrol and growth promotion function. Microbiol Res 235:126445

    Article  Google Scholar 

  • Chance B, Maehly C (1956) Assay of catalase and peroxidases. Methods Enzymol 2:764–775

    Article  Google Scholar 

  • Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22(11):585–594

    Article  CAS  Google Scholar 

  • da Costa CA, Furtado de Miranda R, Costa AF, Cirano JU (2021) Potential of Trichoderma piluliferum as a biocontrol agent of Colletotrichu mmusae in banana fruits. Biocat Agr Biotech 34:102028

    Article  Google Scholar 

  • Dou K, Gao JX, Zhang CL, Yang HT, Jiang XL, Li JS, Li YQ, Wang W, Xian HQ, Li SG, Liu Y, Hu JD, Chen J (2019) Trichoderma biodiversity in major ecological systems of China. J Microbiol 57:668–675

    Article  Google Scholar 

  • Drobya S, Wisniewskib M, Teixid’oc N, Spadaro D, Jijaklie MH (2016) The science, development, and commercialization of postharvest biocontrol products. Post Biol Technol 122:22–29

    Article  Google Scholar 

  • Dukare AS, Paul S, Nambi E, Gupta RK, Singh R, Sharma K, Vishwakarma RK (2018) Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Crit Rev Food Sci Nutr 59(9):1498–1513

    Article  Google Scholar 

  • Faizan M, Javaid AB, Chen C, Mohammed NA, Leonard W, Parvaiz A, Fangyuan Y (2021) Zinc oxide nanoparticles (ZnO-NPs) induce salt tolerance by improving the antioxidant system and photosynthetic machinery in tomato. Plant Physiol Biochem 161:122–130

    Article  CAS  Google Scholar 

  • Fan F, Hamada MS, Li N, Li GQ, Luo CX (2017) Multiple fungicide resistance in Botrytis cinerea from greenhouse strawberries in Hubei Province, China. Plant Dis 101:601–606

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791

    Article  Google Scholar 

  • Fenta L, Mekonnen H, Gashaw T (2019) Biocontrol potential of Trichoderma and yeast against post harvest fruit fungal diseases: a review. World N Nat Sci 27:153–173

    CAS  Google Scholar 

  • Gao L, Jie Z, Leng N, Jinbin Z, Yu Z, Ning G, Taihong W, Jing F, Dongling Y, Sarah P, Xiyun Y (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotech 2:577–583

    Article  CAS  Google Scholar 

  • Garcia-Lopez JI, Nino-Medina G, Olivares-Saenz E, Lira-Saldivar RH, Barriga-Castro ED, Vazquez-Alvarado R, Rodriguez-Salinas PA, Zavala-Garcia F (2019) Foliar application of zinc oxide nanoparticles and zinc sulfate boosts the content of bioactive compounds in habanero peppers. Plants 8:254

    Article  CAS  Google Scholar 

  • Ghazanfar MU, Raza MW, Qamar MI (2018) Trichoderma as potential biocontrol agent, its exploitation in agriculture: a review. Plant Prot 2(3):109–135

    Google Scholar 

  • Gomez KA, Gomez AA (1984) Statistical procedures for agriculture research, 2nd edn. John Willey, New York, p 680

    Google Scholar 

  • Gurmani AR, Ud-Din J, Khan SU, Andaleep R, Waseem K, Ahmad K, Hadyatullah (2012) Soil application of zinc improves growth and yield of tomato. Int J Agric Biol 14:91–96

    CAS  Google Scholar 

  • Hassine M, Aydi-Ben-Abdallah R, Jabnoun-Khireddine H, Daami-Remadi M (2022) Soil-borne and compost-borne Penicillium sp. and Gliocladium spp. as potential microbial biocontrol agents for the suppression of anthracnose-induced decay on tomato fruits. Egypt J Biol Pest Control 32:20

    Article  Google Scholar 

  • He L, Yang L, Azlin M, Mengshi L (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215

    Article  CAS  Google Scholar 

  • Imran M, Esmat FA, Sabry H, Abo-Elyousr KAM, Sallam NMA, Muhammad MMK, Muhammad WY (2021) Characterization and sensitivity of Botrytis cinerea to benzimidazole and succinate dehydrogenase inhibitors fungicides, and illustration of the resistance profile. Aus Plant Pathol. https://doi.org/10.1007/s13313-021-00803-2

    Article  Google Scholar 

  • Imran M, Abo-Elyousr KAM, Mousa M, Saad MM (2022a) A study on the synergetic effect of Bacillus amyloliquefaciens and dipotassium phosphate on Alternaria solani causing early blight disease of tomato. Eur J Plant Pathol. https://doi.org/10.1007/s10658-021-02384-8

    Article  Google Scholar 

  • Imran M, Abo-Elyousr KAM, Mousa M, Saad MM (2022b) Screening and biocontrol evaluation of indigenous native Trichoderma spp. against early blight disease and their field assessment to alleviate natural infection. Egypt J Biol Pest Cont. https://doi.org/10.1186/s41938-022-00544-4

    Article  Google Scholar 

  • Jiang Y, Wang JL, Chen J, Mao LJ, Feng XX, Zhang CL, Lin FC (2016) Trichoderma biodiversity of agricultural fields in east China reveals a gradient distribution of species. PLoS ONE 11(8):e160613

    Article  Google Scholar 

  • Kim J, Rohlf FJ, Sokal RR (1993) The accuracy of phylogenetic estimation using the neighbor-joining method. Evolution 2:471–486

    Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  Google Scholar 

  • Lee JP, Seon WL, Choul SK, Ji HS, Ju HS, Kwang YL, Hyun JK, Soon JJ, Byung JM (2006) Evaluation of formulations of Bacillus licheniformis for the biological control of tomato gray mold caused by Botrytis cinerea. Biol Cont 37:329–337

    Article  Google Scholar 

  • López Bucio J, Pelagio-Flores R, Herrera-Estrella A (2015) Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Sci Hortic 196:109–123

    Article  Google Scholar 

  • Luksiene Z, Neringa R, Bernadeta Z, Nobertas U (2020) Innovative approach to sunlight activated biofungicides for strawberry crop protection: ZnO nanoparticles. J Photochem Photobiol B Biol 203:111656

    Article  CAS  Google Scholar 

  • Menzel CM, Gomez A, Smith LA (2016) Control of grey mould and stem-end rot in strawberry plants growing in a subtropical environment. Aus Plant Pathol 45:489–449

    Article  CAS  Google Scholar 

  • Morci H, Elmulthum N, Hadid M (2020) The role of greenhouses in filling trade gap of tomato crop in Saudi Arabia. Egy J Agro 42(2):97–207

    Google Scholar 

  • Myung-Soo P, Geon-SikSeo KHL, Kyung-Sook B, Seung-Hun Y (2005) Morphological and cultural characteristics of Trichoderma Spp. Associated with green mold of oyster mushroom in Korea. Plant Pathol J 21(3):221–228

    Article  Google Scholar 

  • Nhan LV, Ma C, Rui Y, Liu S, Li X, Xing B, Liu L (2015) Phytotoxic mechanism of nanoparticles: destruction of chloroplasts and vascular bundles and alteration of nutrient absorption. Sci Rep 5:11618

    Article  CAS  Google Scholar 

  • Purwantisari S, Sitepu H, Rukmi I, Lunggani AT, Budihardjo K (2021) Indigenous Trichoderma harzianum as Biocontrol toward Blight Late Disease and Biomodulator in Potato Plant Productivity. Biosaintifika J Biol Biol Edu 13(1):26–33

    Article  Google Scholar 

  • Qualhato TF, Lopes FAC, Steindorff AS, Branda RS, Amorim-Jesuino RSA, Ulhoa CJ (2013) Mycoparasitism studies of Trichoderma species against three phytopathogenic fungi: evaluation of antagonism and hydrolytic enzyme production. Biotech Lett 35:1461–1468

    Article  CAS  Google Scholar 

  • Rahman MA, Razvy MA, Alam MF (2013) Antagonistic activities of Trichoderma strains against chili anthracnose pathogen. Int J Microbiol Mycol 1(1):7–22

    Google Scholar 

  • Rossi L, Lauren NF, Hamidreza S, Xingmao M, Leonardo L (2019) Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiol Bioch 135:160–166

    Article  CAS  Google Scholar 

  • Sharma A, Patni B, Shankhdhar D, Shankhdhar SC (2013) Zinc-an indispensable micronutrient. Physiol Mol Biol Plants 19:11–20

    Article  CAS  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  CAS  Google Scholar 

  • Silva RN, Monteiro VN, Steindorff AS, Gomes EV, Noronha EF, Ulhoa CJ (2019) Trichoderma/pathogen/plant interaction in pre-harvest food security. Fungal Biol 123:565–583

    Article  Google Scholar 

  • Singh S, Arpita T, Deepamala M, Ashutosh A, Poornima V, Alok K (2019) Evaluating the potential of combined inoculation of Trichoderma harzianum and Brevibacterium halotolerans for increased growth and oil yield in Mentha arvensis under greenhouse and field conditions. Indus Crop Prod. https://doi.org/10.1016/j.indcrop.2019.01.039

    Article  Google Scholar 

  • Srivastava A (2021) Studies the effect of Trichoderma harzianum for biocontrol of cucumber (cucumis sativus l.) and suppression of Rhizoctonia solani. Plant Arch 21(1):2059–2062

    Article  Google Scholar 

  • Thiruvengadam M, Rajakumar G, Chung IM (2018) Nanotechnology: current uses and future applications in the food industry. 3 Biotech 8:74

    Article  Google Scholar 

  • Venkatachalam P, Jayaraj M, Manikandan R, Geetha N, Rene ER, Sharma NC, Sahi SV (2017) Zinc oxide nanoparticles (ZnO-NPs) alleviate heavy metal induced toxicity in Leucaena leucocephala seedlings: a physiochemical analysis. Plant Physiol Biochem 110:59–69

    Article  CAS  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Woo SL, Nigro M, Marra R, Lombardi N, Pascale A, Ruocco M, Lanzuise S, Manganiello G, Lorito M (2014) Trichoderma secondary metabolites active on plants and fungal pathogens. Open Mycol J 8:127–139

    Article  Google Scholar 

  • Wang W, Fang Y, Imran M, Hu Z, Zhang S, Huang Z, Liu X (2021) Characterization of the field fludioxonil resistance and its molecular basis in Botrytis cinerea from Shanghai province in China. Microorganisms 9:266

    Article  Google Scholar 

  • Wintgens JN (2009) Coffee: growing, processing, sustainable production. A guidebook for growers, processors, traders and researchers. Wiley

    Google Scholar 

  • Wonglom P, Wilailuck D, Shin-ichi I, Anurag S (2021) Biological control of Sclerotium fruit rot of snake fruit and stem rot of lettuce by Trichoderma sp. T76-12/2 and the mechanisms involved. Physiol Mol Plant Pathol 107:1–7

    Article  Google Scholar 

  • Xiangming X, Robinson L, Jeger M, Jeffries P (2010) Using combinations of biocontrol agents to control Botrytis cinerea on strawberry leaves under fluctuating temperatures. Bio Sci Technol 20:359–373

    Article  Google Scholar 

  • Yin WX, Adnan M, Shang Y, Lin Y, Luo CX (2018) Sensitivity of Botrytis cinerea from nectarine/cherry in China to six fungicides and characterization of resistant isolates. Plant Dis 102:578–585

    Article  Google Scholar 

  • Zhang C, Imran M, Liu M, Li Z, Gao H, Duan H, Zhou S, Liu X (2020) Two point mutations on CYP51 combined with induced expression of the target gene appeared to mediate pyrisoxazole resistance in Botrytis cinerea. Front Microbiol 11:1396

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to Taif University for funding the current work by Taif University Researchers Supporting Project number (TURSP—2020/139), Taif University, Taif, Saudi Arabia. We acknowledge the Chairman of the Department of Arid Land Agriculture, King Abdulaziz University, for support with performing the experiments in the Laboratory of Plant Pathology.

Funding

This project was funded by Taif University Researchers Supporting Project number (TURSP—2020/139), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally in the manuscript, Imran, Abdel-Rahim, and Abo-Elyousr suggested the idea of the work and contributed to data curation and their validation as well as writing original draft. Bagy and Abdel-Rahim contributed to the formal analysis of the data, El-Sharnouby, Sallam, and Ali contributed to the reviewing and editing the manuscript. All authors reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Muhammad Imran.

Ethics declarations

Conflict of interest

M. Imran, K.A. Abo-Elyousr, M. El-Sharnouby, E.F. Ali, N.M. Sallam, H.M.M.K Bagy, and I.R. Abdel-Rahim declare that they have no competing interests.

Ethical standards

This manuscript represents original research, and has not been submitted in full or in part to any other journals for publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imran, M., Abo-Elyousr, K.A.M., El-Sharnouby, M.E. et al. Biocontrol Potential of Trichoderma harzianum and Zinc Nanoparticles to Mitigate Gray Mold Disease of Tomato. Gesunde Pflanzen 75, 151–163 (2023). https://doi.org/10.1007/s10343-022-00686-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-022-00686-3

Keywords

Schlüsselwörter

Navigation