Skip to main content
Log in

Association of Increase in Some Biochemical Components with Flax Resistance to Powdery Mildew

Zusammenhang zwischen erhöhtem Gehalt bestimmter biochemischer Verbindungen und der Resistenz von Flachs gegen Mehltau

  • Original Article
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

An outdoor pot experiment was conducted in 2014/2015 growing season at Giza Agricultural Research Station to evaluate powdery mildew (PM) severity on 18 flax lines. The tested lines were divided into two distinct groups. The first group included 12 highly resistant lines (HRLs). Disease severity on these lines ranged from 1 to 10%. The second group included 6 highly susceptible lines (HSLs) where disease severity ranged from 90–100%. Levels and activities of phenols, alkaloids, proteins, proline, polyphenol oxidase and peroxidase significantly increased in the infected leaves of the HRLs, compared with the HSLs. Of these components, phenols and peroxidase showed the highest increases in the HRLs (102.34 and 199.33%, respectively). These results indicate that the tested biochemical components have roles to play in flax defense against PM through a variety of mechanisms. The results also suggest that phenols or peroxidase in infected leaves could be used in breeding programs to select resistant lines at early stage of PM development.

Zusammenfassung

In der Anbausaison 2014/2015 wurde in der Giza Agricultural Research Station ein Topfexperiment im Freien durchgeführt, um die Schwere von Mehltaubefall bei 18 Flachslinien zu beurteilen. Die getesteten Linien wurden in zwei unterschiedliche Gruppen unterteilt. Die erste Gruppe umfasste 12 hochresistente Linien (highly resistant lines, HRLs). Die Schwere des Befalls dieser Linien reichte von 1 bis 100 %. Die zweite Gruppe umfasste 6 hochanfällige Linien (highly susceptible lines, HSLs), bei denen die Schwere des Befalls von 90 bis 100 % reichte. Die Aktivität von Phenolen, Alkaloiden, Proteinen, Prolin, Polyphenoloxidase und Peroxidase erhöhte sich in den infizierten Blättern von HRLs signifikant im Vergleich zu HSLs. Von diesen Verbindungen zeigten Phenole und Peroxidase den größten Anstieg bei HRLs (102,34 bzw. 199,33 %). Diese Ergebnisse deuten darauf hin, dass die getesteten biochemischen Verbindungen eine Rolle in der Abwehr der Flachspflanzen gegen Mehltau über verschiedene Mechanismen spielen. Die Ergebnisse weisen darüber hinaus auch noch darauf hin, dass Phenole oder Peroxidase in infizierten Blättern in Zuchtprogrammen genutzt werden könnten, um resistente Linien zu einem frühen Zeitpunkt in der Mehltauentwicklung zu selektieren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agrios GN (2005) Plant Patheology, 5th edn. Elsevier Academic Press, San Diego USA

    Google Scholar 

  • Aly AA, Ashour AZA, El-Kady EAF, Mostafa MA (1994) Effectiveness of fungicides for control of powdery mildew of flax and effect of the disease on yield and yield components. J Agric Sci 19:4383–4393 (Mansoura Uni)

    Google Scholar 

  • Aly AA, El-Sweify AH, Mansour MTM (2002) Evaluation of some flax genotypes for powdery mildew resistance under greenhouse and field conditions. J Agric Sci 27:7323–7333 (Mansoura Uni)

    Google Scholar 

  • Aly AA, Mansour MTM, Mohamed H, Abd-Elsalam KA (2012) Examination of correlations between several biochemical components and powdery mildew resistance of flax cultivars. Plant Pathol J 28:149–155

  • Asgarinia P, Cloutier S, Duguid S, Rashid K, Mirlohi A, Banik M, Saeidi G (2013) Mapping quantitative trait loci for powdery mildew resistance in flax (Linum usitatissimum L.). Crop Sci 53:2462–2472

  • Avtar R, Rathi AS, Jatasra DS, Joshi UN (2003) Changes in phenolics and some oxidative enzymes in fenugreek leaves due to powdery mildew infection. Acta Phytopathol Entomol Hung 38:237–244

    Article  Google Scholar 

  • Basandrai D, Basandrai AK, Sethi SG, Bhater S (1994) Evaluation of flax (Linum usitatissimum L) genotypes for multiple disease resistance. Indian J Agri Sci 64:704–707

    Google Scholar 

  • Bates LS, Waldren RP, Teare LD (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  Google Scholar 

  • Blackmore S, Tootill E (1984) The Penguin dictionary of botany. Penguin, Harmondsworth. 390 pp

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chérif M, Arfaoui A, Rhalem A (2007) Phenolic compounds and their role in bio-control and resistance of chickpea to fungal pathogenic attacks. Tunis J Plant Prot 2(1):7–21

    Google Scholar 

  • Dallagnol LI, Rodrigues FA, DaMatta FM, Mielli MV, Pereira SC (2011) Deficiency in silicon uptake affects cytological, physiological, and biochemical events in the rice Bipolaris oryzae interaction. Phytopathol 101(1):92–104

    Article  Google Scholar 

  • Dihazi AD, Jaitt F, Zoulne J, Hassani ME, Hardami IE (2003) Effect of salicylic acid on phenolic compounds related to date palm resistance to Fusarium oxysporum sp. Albedimis. Phytopathol Mediterr 423:9–16

    Google Scholar 

  • Ewa P, Agnieszka P, Franciszek J, Zbigniew Z (2009) ABA level, proline and phenolic concentration and pal activity induced during cold acclimation in androgenic festulium forms with contrasting resistance to frost and pink snow mould (Microdochium nivale). Physiol Mol Plant Pathol 73:126–132

    Google Scholar 

  • Gawande VL, Patil JV, Naik RM, Kale AA (2002) Plant biochemical defense against powdery mildew (Erysiphe pologoni DC) disease in mungbean (Vegna radiate L.) Wilczek). J Plant Biol 29:337–341

    Google Scholar 

  • Harbone JB (1973) Phytochemical methods. A guide to modern techniques of plant analysis. Chapman and Hall, London., pp 185–186

    Google Scholar 

  • Hussein MMM, Omar MR (2013) Resistance of some flax genotypes to powdery mildew and effect of the disease on yield and yield components. J Plant Prod 4:33–50 (Mansoura Uni)

    Google Scholar 

  • Kalia P (1998) Enzymatic association of powdery mildew resistance in garden pea. Veg Sci 25:66–168

    Google Scholar 

  • Kar M, Mishra D (1976) Catalase, peroxidase and polyphenol oxidase activity during leaf senescence. Plant Physiol 57:315–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahto JL, Choudhary U, Singh SN (1995) Stability and genetic divergence in Linseed (Linum usitatissimum) under rainfall situation. Indian J Agri Sci 65:602–604

    Google Scholar 

  • Mansour MTM, Ashry NA, Aly AA, Zayed SME (2003) Evaluation of some flax introductions for powdery mildew resistance under natural infection conditions. J Agri Sci 28:2689–2697 (Mansoura Uni)

    Google Scholar 

  • Melo GA, Shimizu MM, Mazzafera P (2006) Polyphenol oxidase activity in coffee leaves and its role in resistance against coffee leaf miner and coffee leaf rust. Phytochem 67(3):277–285

    Article  CAS  Google Scholar 

  • Mohamed HI, Aly AA, Mansour MTM, El-Samawaty A (2012) Association of oxidative stress components with resistance to flax powdery mildew. Tropical Plant Pathol 37:386–392

    Article  Google Scholar 

  • Mohammadi M, Kazemi H (2002) Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Sci 162:491–498

    Article  CAS  Google Scholar 

  • Morkunas I, Gemerek J (2007) The possible involvement of peroxidase in defense of yellow lupine embryo axes against Fusarium oxysporum. J Plant Physiol 164:497–506

    Article  Google Scholar 

  • Muskett AE, Colhoun J (1947) The diseases of the flax plant. Northern Irland Flax Development Committee, Belfast UK

    Google Scholar 

  • Nutter FW, Teng PS, Shoks FM (1991) Disease assessment terms and concept. Plant Dis 75:1187–1188

    Google Scholar 

  • Nyvall RF (1981) Field crop diseases handbook. AVI Publishing Company, Westport USA

    Google Scholar 

  • Prasad R, Rai M, Kerkhi SA (1988) Resistance of linseed (Linum usitatissimum) germplasm to rust (Melamp soralini) and powdery mildew (Oidiumlini). Indian J Agri Sci 58:548–549

    Google Scholar 

  • Rao KD, Jindal PC, Singh R, Srivastava GC, Sharma RC (2007) Biochemical and genetical studies in grape germplasm for powdery mildew (Uncimula necator) disease resistance. Agri Sci Dig 27:235–238

    Google Scholar 

  • Satisha J, Doshi P, Adsula PG (2008) Influence of rootstocks on changing the pattern of phenolic compounds in Thompson seedless grapes and its relationship to the incidence of powdery mildew. Turk J Agric For 32:1–9

    CAS  Google Scholar 

  • Slama I, Messedi D, Ghnaya T, Savoure A, Abdelly CH (2006) Effects of water deficit on growth and proline metabolism in Sesuvium portulacastrum. Environ Exp Bot 56:231–238

    Article  CAS  Google Scholar 

  • Strange RN (2003) Introduction in Plant Pathology. Wiley and Sons, West Sussex UK

    Google Scholar 

  • Tomas JE, Kenyon DM, Wedgwood EF, Barrow A, Biddle A, Cook S, Knott GM (1999) Resistance to powdery mildew (Oidium lini) in cultivars of winter and spring linseed. Asp Appl Biol 56:169–172

    Google Scholar 

  • Zayed SME, Abou-Zaied TA, Omar MR (2008) Susceptibility of some flax genotypes to powdery mildew and effect of the disease on yield and yield components. J Agri Sci 33:2511–2520 (Mansoura Uni)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. I. Mohamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aly, A.A., Mansour, M.T.M. & Mohamed, H.I. Association of Increase in Some Biochemical Components with Flax Resistance to Powdery Mildew. Gesunde Pflanzen 69, 47–52 (2017). https://doi.org/10.1007/s10343-017-0387-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-017-0387-7

Keywords

Schlüsselwörter

Navigation