Skip to main content

Advertisement

Log in

Response of fungal and plant communities to management-induced overstorey changes in montane forests of the Western Carpathians

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

The effect of forest management on biodiversity is a crucial issue for sustainable forestry and nature conservation. However, the ways in which management affects macrofungal and plant communities and diversity of mountain temperate forests still remain poorly understood. We performed a random sampling stratified by stand age and stand type on the sites of temperate montane fir–beech forests. Diversity of macrofungi and the vascular plant understorey in beech- and spruce-dominated managed stands was investigated and compared to primeval forests located in the Poľana Biosphere Reserve, Western Carpathians. Both the vascular plant and the macrofungal communities were altered by management, and the response of the macrofungal species (especially wood-inhabiting fungi) was more pronounced in terms of species composition change. Species turnover evaluation seems to be an important tool of forest natural status assessment, because alpha diversity did not change as much as species composition. Certain species of Carpathian primeval forests were confirmed as good indicators for natural forest change; others were proposed. Species pool and mean number of species per plot were the highest in unmanaged fir–beech forests, and species diversity significantly decreased in spruce plantations. The number of species decreased significantly due to the change of canopy tree species composition only in the macrofungal communities. As an outcome for forest management, we recommend keeping mixed forests involving all natural tree species and providing at least a minimal amount of dead wood necessary for wood-inhabiting organisms and leaving some area of unmanaged natural forests within complexes of managed stands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abrego N, Christensen M, Bässler C, Ainsworth AM, Heilmann-Clausen J (2016) Understanding the distribution of wood-inhabiting fungi in European beech reserves from species-specific habitat models. Fungal Ecol. https://doi.org/10.1016/j.funeco.2016.07.006

    Article  Google Scholar 

  • Abs C, Fischer A, Heinrich J, Kugler F, Schöffmann C, Mayer P (2005) Pattern of plant diversity in natural and managed mountain forest. In: Commarmot B, Hamor FD (eds) Natural forests in the temperate zone of Europe—values and utilisation (proceedings, conference 13–17 October 2003 Mukachevo, Ukraine). Swiss Federal Research Institute WSL, Birmensdorf, Carpathian Biosphere Reserve, Rakhiv, pp 273–279

    Google Scholar 

  • Adamčík S, Christensen M, Heilmann-Clausen J, Walleyn R (2007) Fungal diversity in the Poloniny National Park with emphasis on indicator species of conservation value of beech forests in Europe. Czech Mycol 59:67–81

    Google Scholar 

  • Adamčík S, Aude E, Bässler C, Christensen M, van Dort K, Ódor P (2016) Fungi and lichens recorded during the Cryptogam Symposium on Natural Beech Forests, Slovakia 2011. Czech Mycol 68:1–40

    Google Scholar 

  • Agerer R (2001) Exploration types of ectomycorrhizae. Mycorrhiza 11:107–114

    Article  Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Aust Ecol 26:32–46. https://doi.org/10.1111/j.1442-9993.2001.01070

    Article  Google Scholar 

  • Augusto L, Dupouey JL, Ranger J (2003) Effects of tree species on understory vegetation and environmental conditions in temperate forests. Ann Forest Sci 60:823–831. https://doi.org/10.1051/forest:2003077

    Article  Google Scholar 

  • Baral HO, Galan-Marquez R, Krisai-Greilhuber I, Matočec N, Palmer JT (1999) Tatraea dumbirensis, new records of a rare leotialean discomycete in Europe. Österr Z Pilzk 8:71–82

    Google Scholar 

  • Barbier S, Gosselin F, Balandier P (2008) Influence of tree species on understory vegetation diversity and mechanisms involved—a critical review for temperate and boreal forests. Forest Ecol Manag 254:1–15. https://doi.org/10.1016/j.foreco.2007.09.038

    Article  Google Scholar 

  • Bässler C, Müller J, Dziock F, Brandl R (2010) Effects of resource availability and climate on the diversity of wood-decaying fungi. J Ecol 98:822–832

    Article  Google Scholar 

  • Bässler C, Müller J, Svoboda M, Lepšová A, Hahn C, Holzer H, Pouska V (2012) Diversity of wood-decaying fungi under different disturbance regimes—a case study from spruce mountain forests. Biodivers Conserv 21:33–49. https://doi.org/10.1007/s10531-011-0159-0

    Article  Google Scholar 

  • Bässler C, Ernst R, Cadotte M, Heibl Ch, Müller J (2014) Near-to-nature logging influences fungal community assembly processes in a temperate forest. J Appl Ecol 51:939–948. https://doi.org/10.1111/1365-2664.12267

    Article  Google Scholar 

  • Battles JJ, Shlisky AJ, Barrett RH, Heald RC, Allen-Diaz BH (2001) The effects of forest management on plant species diversity in a Sierran conifer forest. Forest Ecol Manag 146:211–222. https://doi.org/10.1016/S0378-1127(00)00463-1

    Article  Google Scholar 

  • Berglund H, Jonsson BG (2001) Predictability of plant and fungal species richness of old-growth boreal forest islands. J Veg Sci 12:857–866. https://doi.org/10.2307/3236874

    Article  Google Scholar 

  • Berglund H, Jonsson BG (2008) Assessing the extinction vulnerability of wood-inhabiting fungal species in fragmented northern Swedish boreal forests. Biol Conserv 141:3029–3039. https://doi.org/10.1016/j.biocon.2008.09.007

    Article  Google Scholar 

  • Blaser S, Prati D, Senn-Irlet B, Fischer M (2013) Effects of forest management on the diversity of deadwood-inhabiting fungi in Central European forests. Forest Ecol Manag 304:42–48. https://doi.org/10.1016/j.foreco.2013.04.043

    Article  Google Scholar 

  • Blasi C, Marchetti M, Chiavetta U, Aleffi M, Audisio P, Azzella MM, Brunialti G, Capotorti G, Del Vico E, Lattanzi E, Persiani AM, Ravera S, Tilia A, Burrascano S (2010) Multi-taxon and forest structure sampling for identification of indicators and monitoring of old-growth forest. Plant Biosyst 144:160–170. https://doi.org/10.1080/11263500903560538

    Article  Google Scholar 

  • Bredesen B, Haugan R, Aanderaa R, Lindblad I, Økland B, Røsok Ø (1997) Wood-inhabiting fungi as indicators of continuity in spruce forests in eastern Norway. Blyttia 54:131–140

    Google Scholar 

  • Brown N, Bhagwat S, Watkinson S (2006) Macrofungal diversity in fragmented and disturbed forests of the Western Ghats of India. J Appl Ecol 43:11–17. https://doi.org/10.1111/j.1365-2664.2005.01107.x

    Article  Google Scholar 

  • Brunet J, Fritz Ö, Richnau G (2010) Biodiversity in European beech forests–a review with recommendations for sustainable forest management. Ecol Bull 53:77–94

    Google Scholar 

  • Bučinová K, Ujházy K, Glejdura S, Mihál I, Križová E (2012) Druhová diverzita trofických skupín makromycétov a cievnatých rastlín vo východnej časti Národnej prírodnej rezervácie Dobročský prales v porovnaní s priľahlými hospodárskymi lesmi. [Species diversity of trophic groups of macrofungi and vascular plants in the eastern part of Dobročský prales National Natural Reserve in comparison with the neighbouring managed forests]. Acta Facultatis Forestalis Zvolen 53:65–93

    Google Scholar 

  • Buée M, Maurice JP, Zeller B, Andrianarisoa S, Ranger J, Courtecuisse R, Marçais B, Le Tacon F (2011) Influence of tree species on richness and diversity of epigeous fungal communities in a French temperate forest stand. Fungal Ecol 4:22–31. https://doi.org/10.1016/j.funeco.2010.07.003

    Article  Google Scholar 

  • Čadek P, Gáper J (2008) Diversity of macrofungi in the Plavno and Badínsky prales national nature reserves. Matthias Belivs Univ Proc 4:27–37

    Google Scholar 

  • Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, Ellison AM (2014) Rarefaction and extrapolation with hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84:45–67

    Article  Google Scholar 

  • Chavez V, Macdonald SE (2010) The influence of canopy patch mosaics on understory plant community composition in boreal mixedwood forest. Forest Ecol Manag 259:1067–1075. https://doi.org/10.1016/j.foreco.2009.12.013

    Article  Google Scholar 

  • Chiarucci A, D’auria F, De Dominicis V, Laganà A, Perini C, Salerni E (2005) Using vascular plants as a surrogate taxon to maximize fungal species richness in reserve design. Conserv Biol 19:1644–1652. https://doi.org/10.1111/j.1523-1739.2005.00202.x

    Article  Google Scholar 

  • Christensen M, Heilmann-Clausen J, Walleyn R, Adamčík S (2004) Wood-inhabiting fungi as indicators of nature value in European beech forests. In: Marchetti M (ed) Monitoring and indicators of forest biodiversity in Europe—from ideas to operationality. European Forest Institute, Joensuu, pp 229–237

    Google Scholar 

  • Christensen M, Hahn K, Mountford EP, Odor P, Standovár T, Rozenbergar D, Diaci J, Wijdeven S, Meyer P, Winter S, Vrška T (2005) Dead wood in European beech (Fagus sylvatica) forest reserves. Forest Ecol Manag 210:267–282

    Article  Google Scholar 

  • Chytrý M, Tichý L, Holt J, Botta-Dukát Z (2002) Determination of diagnostic species with statistical fidelity measures. J Veg Sci 13:79–90

    Article  Google Scholar 

  • Dahlberg A, Croneborg H (2003) 33 threatened fungi in Europe. Complementary and revised information on candidates for listing in Appendix I of the Bern Convention, Swedish Species Information Centre, Swedish Environmental Protection Agency and European Council for Conservation of Fungi, Uppsala

  • Dix NJ, Webster J (2012) Fungal ecology. Springer, Berlin

    Google Scholar 

  • Durak T (2012) Changes in diversity of the mountain beech forest herb layer as a function of the forest management method. Forest Ecol Manag 276:154–164. https://doi.org/10.1016/j.foreco.2012.03.027

    Article  Google Scholar 

  • Dvořák D, Vašutová M, Hofmeister J, Beran M, Hošek J, Běťák J, Burel J, Deckerová H (2017) Macrofungal diversity patterns in central European forests affirm the key importance of oldgrowth forests. Fungal Ecol. https://doi.org/10.1016/j.funeco.2016.12.003

    Article  Google Scholar 

  • Ewald J (2000) The partial influence of Norway spruce stands on understorey vegetation in montane forests of the Bavarian Alps. Mt Res Dev 20:364–371. https://doi.org/10.1659/0276-4741(2000)020%5B0364:TPIONS%5D2.0.CO;2

    Article  Google Scholar 

  • Frazer GW, Canham CD, Lertzman KP (1999) Gap Light Analyzer (GLA): Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs. User’s manual and program documentation. Simon Fraser University, Burnaby, and the Institute of Ecosystem Studies, Millbrook

  • Gilliam FS, Roberts MR (1995) Impacts of forest management on plant diversity. Ecol Appl 5:911–912. https://doi.org/10.2307/2269342

    Article  Google Scholar 

  • Glejdura S (2002) Zoznam húb [A list of fungi of Dobroč virgin forest]. In: Slávik D et al. Dobročský prales, Národná prírodná rezervácia. ÚVVP LVH SR, Zvolen, pp 48–55

  • Glejdura S (2013) New records of basidiomycetes and ascomycetes in the Stolické vrchy Mts. (Slovakia). Mykol Listy 124:15–40

    Google Scholar 

  • Glejdura S, Kunca V (2010) Nové poznatky o mykoflóre CHKO Poľana. [New knowledge of mycoflora in Poľana]. In: Midriak R (ed) Biosférické rezervácie na Slovensku VIII Zvolen: Technická univerzita vo Zvolene. Zvolen, Slovenský výbor pre Program MAB UNESCO, Bratislava, pp 71–77

    Google Scholar 

  • Gminder A, Krieglsteiner GJ (2001) Die Großpilze Baden-Württembergs. 3. Ständerpilze: Blätterpilze. Ulme

  • Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19

    Article  Google Scholar 

  • Granito VM, Lunghini D (2011) Biodiversity of macrofungi in the beech forests and calcareous grasslands of the Simbruini Mountains Regional Park (central Apennines, Italy). Plant Biosyst 145:381–396. https://doi.org/10.1080/11263504.2011.563523

    Article  Google Scholar 

  • Granito VM, Lunghini D, Maggi O, Persiani AM (2015) Wood-inhabiting fungi in southern Italy forest stands: morphogroups, vegetation types and decay classes. Mycologia 107:1074–1088. https://doi.org/10.3852/13-400

    Article  PubMed  CAS  Google Scholar 

  • Halpern CB, Spies TA (1995) Plant-species diversity in natural and managed forests of the Pacific-northwest. Ecol Appl 5:913–934. https://doi.org/10.2307/2269343

    Article  Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432. https://doi.org/10.1017/S0953756201004725

    Article  Google Scholar 

  • Hédl R, Kopecký M, Komárek J (2010) Half a century of succession in a temperate oakwood: from species-rich community to mesic forest. Divers Distrib 16:267–276. https://doi.org/10.1111/j.1472-4642.2010.00637.x

    Article  Google Scholar 

  • Heilmann-Clausen J, Walleyn R (2007) Some records of wood-inhabiting fungi on Fagus sylvatica in Northern Spain. Rev Catalana Micol 29:67–80

    Google Scholar 

  • Hennekens SM, Schaminee JHJ (2001) TURBOVEG, a comprehensive data base management system for vegetation data. J Veg Sci 12:589–591. https://doi.org/10.2307/3237010

    Article  Google Scholar 

  • Hermy M, Honnay O, Firbank L, Grashof-Bokdam C, Lawesson JE (1999) An ecological comparison between ancient and other forest plant species of Europe, and the implications for forest conservation. Biol Conserv 91:9–22. https://doi.org/10.1016/S0006-3207(99)00045-2

    Article  Google Scholar 

  • Hofmeister J, Hošek J, Brabec M, Dvořák D, Beran M, Deckerová H, Burel J, Kříž M, Borovička J, Běťák J, Vašutová M (2014) Richness of ancient forest plant species indicates suitable habitats for macrofungi. Biodivers Conserv 23:2015–2031. https://doi.org/10.1007/s10531-014-0701-y

    Article  Google Scholar 

  • Holec J (2005) Distribution and ecology of Camarops tubulina (Ascomycetes, Boliniaceae) in the Czech Republic and remarks on its European distribution. Czech Mycol 57:97–115

    Google Scholar 

  • Holec J (2008) Ecology of the rare fungus Hydropus atramentosus (Basidiomycota, Agaricales) in the Czech Republic and its potential value as a bioindicator of old-growth forests. Czech Mycol 60:125–136

    Google Scholar 

  • Holec J, Beran M (2006) Červený seznam hub (makromycetů) České republiky. [Red list of fungi (macromycetes) of the Czech Republic]. Příroda, Praha

    Google Scholar 

  • Holec J, Kříž M, Pouzar Z, Šandová M (2015) Boubínský prales virgin forest, a Central European refugium of boreal-montane and old-growth forest fungi. Czech Mycol 67:157–226

    Google Scholar 

  • Hsieh TC, Ma KH, Chao A (2016) iNEXT: iNterpolation and EXTrapolation for species diversity. R package version 2.0.12. http://chao.stat.nthu.edu.tw/blog/software-download. Accessed 20 Nov 2016

  • Jančovičová S, Blanár D, Glejdura S, Kunca V (2017) Panellus ringens and P. violaceofulvus (Agaricales, Mycenaceae) from Slovakia: morphological and ecological aspects. Folia Oecol 43:164–175

    Google Scholar 

  • Kinga R, Morschhauser T, Pál-Fám F, Botta-Dukát Z (2013) Exploring the relationship between macrofungi diversity, abundance, and vascular plant diversity in semi-natural and managed forests in north-east Hungary. Ecol Res 28:543–552. https://doi.org/10.1007/s11284-013-1044-y

    Article  Google Scholar 

  • Kruskal JB (1964) Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29:1–27. https://doi.org/10.1007/BF02289565

    Article  Google Scholar 

  • Kucbel S, Saniga M, Jaloviar P, Vencurik J (2012) Stand structure and temporal variability in old-growth beech-dominated forests of the northwestern Carpathians: a 40-years perspective. Forest Ecol Manag 264:125–133. https://doi.org/10.1016/j.foreco.2011.10.011

    Article  Google Scholar 

  • Küffer N, Gillet F, Senn-Irlet B, Job D, Aragno M (2008) Ecological determinants of fungal diversity on dead wood in European forests. Fungal Divers 30:83–95

    Google Scholar 

  • Kuthan J, Adamčik S, Terray J, Antonín V (1999) Huby národného parku Poloniny. [Fungi of the national park Poloniny]. National park Poloniny Administration Liptovský Mikuláš, Snina

  • Liira J, Kohv K (2010) Stand characteristics and biodiversity indicators along the productivity gradient in boreal forests: defining a critical set of indicators for the monitoring of habitat nature quality. Plant biosyst 144:211–220. https://doi.org/10.1080/11263500903560868

    Article  Google Scholar 

  • Lindenmayer DB, Margules CR, Botkin DB (2000) Indicators of biodiversity for ecologically sustainable forest management. Conserv Biol 14:941–950. https://doi.org/10.1046/j.1523-1739.2000.98533.x

    Article  Google Scholar 

  • Lizoň P (2001) Red list of Slovak fungi. 3rd edition. Catathelasma 2:25–33

    Google Scholar 

  • Lonsdale D, Pautasso M, Holdenrieder O (2008) Wood-decaying fungi in the forest: conservation needs and management options. Eur J For Res 127:1–22. https://doi.org/10.1007/s10342-007-0182-6

    Article  Google Scholar 

  • Máliš F, Ujházy K, Vodálová A, Barka I, Čaboun V, Sitková Z (2012) The impact of Norway spruce planting on herb vegetation in the mountain beech forests on two bedrock types. Eur J For Res 131:1551–1569. https://doi.org/10.1007/s10342-012-0624-7

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • Marhold K, Hindák F (1998) Zoznam nižších a vyšších rastlín Slovenska. [Checklist of non-vascular and vascular plants of Slovakia]. Veda, Bratislava

    Google Scholar 

  • McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297. https://doi.org/10.1890/0012-9658(2001)082%5B0290:FMMTCD%5D2.0.CO;2

    Article  Google Scholar 

  • McMullen-Fisher SJM, Kirkpatrick JB, May TW, Pharo EJ (2010) Surrogates for macrofungi and mosses in reservation planning. Conserv Biol 24:730–736. https://doi.org/10.1111/j.1523-1739.2009.01378.x

    Article  Google Scholar 

  • Mihál I (2011) Príspevok k poznaniu mykoflóry Poľany (Stredné Slovensko). [Contribution to the knowledge of mycoflora of Poľana (Central Slovakia)]. Nat Carp 52:7–16

    Google Scholar 

  • Mihál I (2012) Species diversity, abundance and dominance of macromycetes in beech forest stands with different intensity of shelterwood cutting interventions. Folia Oecol 39:53–62

    Google Scholar 

  • Mihál I (2013) K poznaniu mykoflóry (Ascomycota, Basidiomycota, Deuteromycota – Fungi. imperfecti) Národnej prírodnej rezervácie Badínsky prales. [Contribution to the knowledge of mycoflora (Ascomycota, Basidiomycota, Deuteromycota – Fungi imperfecti) of the National nature reserve Badínsky virgin forest]. Nat Carp 54:7–16

    Google Scholar 

  • Mőlder A, Bernhardt-Rőmermann M, Schmidt W (2008) Herb-layer diversity in deciduous forests: raised by tree richness or beaten by beech? Forest Ecol Manag 256:272–281. https://doi.org/10.1016/j.foreco.2008.04.012

    Article  Google Scholar 

  • Nordén B, Appelqvist T (2001) Conceptual problems of ecological continuity and its bioindicators. Biodivers Conserv 10:779–791. https://doi.org/10.1023/A:1016675103935

    Article  Google Scholar 

  • Ódor P, Heilmann-Clausen J, Christensen M, Aude E, van Dort KW, Piltaver A, Siller I, Veerkamp MT, Walleyn R, Standovár T, van Hees AFM, Kosec J, Matočec N, Kraigher H, Grebenc T (2006) Diversity of dead wood inhabiting fungi and bryophytes in semi-natural beech forests in Europe. Biol Conserv 131:58–71. https://doi.org/10.1016/j.biocon.2006.02.004

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2016) Vegan: community ecology package. R package version 2.3-3. http://CRAN.R-project.org/package=vegan. Accessed 15 Feb 2016

  • Paillet Y, Bergès L, Hjältén J, Ódor P, Avon C, Bernhardt-Römermann M, Bijlsma RJ, De Bruyn L, Fuhr M, Grandin U, Kanka R, Lundin L, Luque S, Magura T, Matesanz S, Mészáros I, Sebastià MT, Schmidt W, Standovár T, Tóthmérész B, Uotila A, Valladares F, Vellak K, Virtanen R (2010) Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe. Conserv Biol 24:101–112. https://doi.org/10.1111/j.1523-1739.2009.01399.x

    Article  PubMed  Google Scholar 

  • Persiani AM, Lombard F, Lunghin D, Granit VM, Tognett R, Magg O, Pioli S, Marchetti M (2015) Stand structure and deadwood amount influences saproxylic fungal biodiversity in Mediterranean mountain unmanaged forests. iForest Biogeosci For 9:115. https://doi.org/10.3832/ifor1304-008

    Article  Google Scholar 

  • R Core Team (2016) A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org/. Accessed 26 July 2016

  • Ripková S, Blanár D (2004) Výskyt druhov rodu Crepidotus na Muránskej planine a v priľahlej oblasti Slovenského Rudohoria. [Occurrence of species genus Crepidotus in the Muránska Planina Mts. and in adjacent areas of the Slovenské Rudohorie Mts.]. Reussia 1:49–67

    Google Scholar 

  • Ripková S, Adamčík S, Kučera V, Palko L (2007) Fungi of the Protected Landscape Area of Vihorlat. Institute of Botany of the Slovak Academy of Sciences, Bratislava

    Google Scholar 

  • Rudolf VH, Rasmussen NL (2013) Ontogenetic functional diversity: size structure of a keystone predator drives functioning of a complex ecosystem. Ecology 94:1046–1056. https://doi.org/10.1890/12-0378.1

    Article  PubMed  Google Scholar 

  • Sæetersdal M, Gjerde I, Blom HH, Ihlen PG, Myrseth EW, Pommeresche R, Skartveit J, Solhøy T, Aas O (2003) Vascular plants as a surrogate species group in complementary site selection for bryophytes, macrolichens, spiders, carabids, staphylinids, snails, and wood living polypore fungi in a northern forest. Biol Conserv 115:21–31. https://doi.org/10.1016/S0006-3207(03)00090-9

    Article  Google Scholar 

  • Saitta A, Bernicchia A, Gorjón SP, Altobelli E, Granito VM, Losi C, Lunghini D, Maggi O, Medardi G, Padovan F, Pecoraro L, Vizzini A, Persiani AM (2011) Biodiversity of wood-decay fungi in Italy. Plant Biosyst 145:958–968. https://doi.org/10.1080/11263504.2011.633114

    Article  Google Scholar 

  • Šamonil P, Vrška T (2007) Trends and cyclical changes in natural fir-beech forests at the north-western edge of the Carpathians. Folia Geobot 42:337–361. https://doi.org/10.1007/BF02861699

    Article  Google Scholar 

  • Santi E, Maccherini S, Rocchini D, Bonini I, Brunialti G, Favilli L, Perini C, Pezzo F, Piazzini S, Rota E, Salerni E, Chiarucci A (2010) Simple to sample: vascular plants as surrogate group in a nature reserve. J Nat Conserv 18:2–11. https://doi.org/10.1016/j.jnc.2009.02.003

    Article  Google Scholar 

  • Schall P, Gossner MM, Heinrichs S, Fischer M, Boch S, Prati D, Jung K, Baumgartner V, Blaser S, Böhm S, Buscot F, Daniel R, Goldmann K, Kaiser K, Kahl T, Lange M, Müller J, Overmann J, Renner SC, Schulze ED, Sikorski J, Tschapka M, Türke M, Weisser WW, Wemheuer B, Wubet T, Ammer Ch (2017) The impact of even-aged and uneven-aged forest management on regional biodiversity of multiple taxa in European beech forests. J Appl Ecol. https://doi.org/10.1111/1365-2664.12950

    Article  Google Scholar 

  • Schmit JP, Lodge DJ (2005) Classical Methods and Modern Analysis for Studying Fungal Diversity. In: Dighton J, Oudemans P, White JF Jr (eds) The fungal community: its organization and role in the ecosystem, 3rd edn. CRC Press, London, pp 193–214

    Chapter  Google Scholar 

  • Schoenholtz SH, Van Miegroet H, Burger JA (2000) A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities. Forest Ecol Manag 138:335–356. https://doi.org/10.1016/S0378-1127(00)00423-0

    Article  Google Scholar 

  • Schröter M, Härdtle W, von Oheimb G (2012) Crown plasticity and neighbourhood interactions of European beech ( Fagus sylvatica L.) in an old-growth forest. Eur J Forest Res 131:787–798. https://doi.org/10.1007/s10342-011-0552-y

    Article  Google Scholar 

  • Schulze ED, Beck E, Müller-Hohenstein K (2005) Plant ecology. Springer, Berlin

    Google Scholar 

  • Schulze ED, Aas G, Grimm GW, Gossner MM, Walentowski H, Ammer C, Kühn I, Bouriaud O, von Gadow K (2015) A review on plant diversity and forest management of European beech forests. Eur J Forest Res 135:51–67. https://doi.org/10.1007/s10342-015-0922-y

    Article  Google Scholar 

  • Standovár T, Kenderes K (2003) A review on natural stand dynamics in beechwoods of East Central Europe. Appl Ecol Environ Res 1:19–46

    Article  Google Scholar 

  • Šťastný P, Nieplová E, Melo M (2002) Mean annual air temperature. In: Miklós L, Maráky P, Klinda J (eds) Landscape Atlas of the Slovak Republic. Ministry of Environment of the Slovak Republic. Slovak Environmental Agency, Bratislava, p 98

    Google Scholar 

  • Swanson ME, Franklin JF, Beschta RL, Crisafulli CM, DellaSala DA, Hutto RL, Lindenmayer DB, Swanson FJ (2011) The forgotten stage of forest succession: early-successional ecosystems on forest sites. Front Ecol Environ 9:117–125. https://doi.org/10.1890/090157

    Article  Google Scholar 

  • Sydes C, Grime JP (1981) Effects of tree leaf litter on herbaceous vegetation in deciduous woodland. J Ecol 69:249–262. https://doi.org/10.2307/2259828

    Article  Google Scholar 

  • Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263. https://doi.org/10.1007/s00572-009-0274-x

    Article  PubMed  Google Scholar 

  • Thomas SC, Halpern CB, Falk DA, Liguori DA, Austin KA (1999) Plant diversity in managed forests: understory responses to thinning and fertilization. Ecol Appl 9:864–879. https://doi.org/10.1890/1051-0761(1999)009%5B0864:PDIMFU%5D2.0.CO;2

    Article  Google Scholar 

  • Tichý L (2002) JUICE, software for vegetation classification. J Veg Sci 13:451–453. https://doi.org/10.1658/1100-9233(2002)013%5B0451:JSFVC%5D2.0.CO;2

    Article  Google Scholar 

  • Tomáň P, Kabát V (2004) Vzácne druhy makromycétov oravskej prírody. [Rare species of macromycetes in Orava]. Zborník Oravského múzea 21:178–184

    Google Scholar 

  • Ujházy K, Križová E, Murín M, Ondruš M (2009) Krátkodobé zmeny vegetácie jedľových bučín Dobročského pralesa. [Short-term changes in the vegetation of fir-beech forests in the Dobročský prales virgin forest]. Zprávy Čes Bot Společ 44:59–77

    Google Scholar 

  • Ujházy K, Križová E, Glončák P, Benčaťová B, Nič J (2013) Tree species and management effect on herb layer species composition in mountain fir-beech forests of the Western Carpathians. In: Kozak J, Ostapowicz K, Bytnerowicz A, Wyżga B (eds) The Carpathians: integrating nature and society towards sustainability. Springer, Berlin, pp 239–255

    Chapter  Google Scholar 

  • Ujházy K, Hederová L, Máliš F, Ujházyová M, Bošeľa M, Čiliak M (2017) Overstorey dynamics controls plant diversity in age-class temperate forests. Forest Ecol Manag 391:96–105. https://doi.org/10.1016/j.foreco.2017.02.010

    Article  Google Scholar 

  • Ujházyová M, Ujházy K (2007) Dynamika fytocenóz bukových lesov v Kysuckej vrchovine. [Vegetation dynamics of beech forests of the Kysucká Vrchovina Mts.]. In: Križová E, Ujházy K (eds) Dynamika, stabilita a diverzita lesných ekosystémov. TU vo Zvolene, Zvolen, pp 29–36

    Google Scholar 

  • Ujházyová M, Ujházy K, Chytrý M, Willner W, Čiliak M, Máliš F, Slezák M (2016) Diversity of beech forest vegetation in the Eastern Alps, Bohemian Massif and the Western Carpathians. Preslia 88:435–457

    Google Scholar 

  • Verstraeten G, Baeten L, De Frenne P, Vanhellemont M, Thomaes A, Boonen W, Muys B, Verheyen K (2013) Understorey vegetation shifts following the conversion of temperate deciduous forest to spruce plantation. Forest Ecol Manag 289:363–370. https://doi.org/10.1016/j.foreco.2012.10.049

    Article  Google Scholar 

  • Zhang Ch, Xie G, Fan S, Zhen L (2010) Variation in vegetation structure and soil properties, and the relation between understory plants and environmental variables under different Phyllostachys pubescens forests in Southeastern China. Environ Manage 45:779–792. https://doi.org/10.1007/s00267-010-9429-y

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Science Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences VEGA, Grant Nos. 2/0039/14, 1/0639/17 and Slovak Research and Development Agency under the project APVV-15-0270 and APVV-15-0176. We also acknowledge the postdoc support of Katarína Bučinová in 2015 at the University of Vienna funded by Action Austria—Slovakia, Cooperation in Science and Education (Ministry of Education, Science, Research and Sport of the Slovak Republic and the Federal Ministry of Science, Research and Economy of the Republic of Austria).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karol Ujházy.

Additional information

Communicated by Hans Pretzsch.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ujházy, K., Ujházyová, M., Bučinová, K. et al. Response of fungal and plant communities to management-induced overstorey changes in montane forests of the Western Carpathians. Eur J Forest Res 137, 169–183 (2018). https://doi.org/10.1007/s10342-017-1096-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-017-1096-6

Keywords

Navigation