Skip to main content
Log in

Characterization of the structure, dynamics, and productivity of mixed-species stands: review and perspectives

  • Assmann Review
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

The growth and yield of mixed-species stands has become an important topic of research since there are certain advantages of this type of forest as regards functions and services. However, the concepts and methods used to characterize mixed stands need to be understood, as well as harmonized and standardized. In this review we have compiled a set of measures, indices, and methods at stand level to characterize the structure, dynamics, and productivity of mixed stands, and we discuss the pros and cons of their application in growth and yield studies. Parameters for the characterization of mixed stand structure such as stand density, species composition, horizontal (intermingling) and vertical tree distribution pattern, tree size distribution, and age composition are described, detailing the potential as well as the constraints of these parameters for understanding resource capture, use, and efficiency in mixed stands. Furthermore, a set of stand-level parameters was evaluated to characterize the dynamics of mixed stands, e.g. height growth and space partitioning, self- and alien-thinning, and growth partitioning among trees. The deviations and changes in the behaviour of the analysed parameters in comparison with pure stand conditions due to inter-specific interactions are of particular interest. As regards stand productivity, we reviewed site productivity indices, the growth–density relationship in mixed stands as well as methods to compare productivity in mixed versus monospecific stands. Finally, we discuss the main problems associated with the methodology such as up-scaling from tree to stand level as well as the relevance of standardized measures and methods for improving forest growth and yield research in mixed stands. The main challenges are also outlined, especially the need for qualitatively sound data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adame P, Brandeis TJ, Uriarte M (2014) Diameter growth performance of tree functional groups in Puerto Rican secondary tropical forests. For Syst 23(1):52–63

    Google Scholar 

  • Alberdi I, Cañellas I, Hernández L, Condés S (2013) A new method for the identification of old-growth trees in National Forest Inventories: application to Pinus halepensis Mill stands in Spain. Ann For Sci 70:277–285

    Article  Google Scholar 

  • Amoroso MM, Turnblom EC (2006) Comparing productivity of pure and mixed Douglas-fir and western hemlock plantations in the Pacific Northwest. Can J For Res 36:1484–1496

    Article  Google Scholar 

  • Assmann E (1953) Die Verlagerung der Höhenkurven von Plenterwaldflächen und ihre Ursachen. Allg Forst- u Jagdztg 124:175–177

    Google Scholar 

  • Assmann E (1954) Die Standraumfrage und die Methodik von Mischbestandsuntersuchungen. Allg Forst- u Jagdztg 125:149–153

    Google Scholar 

  • Assmann E (1967) Über einige Möglichkeiten, den Gefährdungsgrad und Pflegebedarf, die Holzqualität und geldwerte Leistung von Rein- und Mischbeständen günstig zu beeinflussen. Forstw Cbl 86:81–89

    Article  Google Scholar 

  • Assmann E (1970) The principles of forest yield study: studies in the organic production, structure, increment and yield of forest stands. Pergamon Press, Oxford

    Google Scholar 

  • Barbati A, Salvati R, Ferrari B, Di Santo D, Quatrini A, Portoghesi L, Travaglini D, Iovino F, Nocentini S (2012) Assessing and promoting old-growthness of forest stands: lessons from research in Italy. Plant Biosyst 146(1):167–174

    Article  Google Scholar 

  • Barbeito I, Montes F, Cañellas I (2009) Evaluating the behaviour of vertical structure indices in Scots pine forests. Ann For Sci 66(710):1–10

    Google Scholar 

  • Barbeito I, Collet C, Ningre F (2014) Crown responses to neighbour density and species identity in a young mixed deciduous stand. Trees 28:1751–1765

    Article  Google Scholar 

  • Begon M, Townsend CR, Harper JL (2006) Ecology: from individuals to ecosystems. Blackwell, Oxford

    Google Scholar 

  • Belote RT, Prisley S, Jones RH, Fitzpatrick M, de Beurs K (2011) Forest productivity and tree diversity relationships depend on ecological context within mid-Atlantic and Appalachian forests (USA). For Ecol Manag 261(7):1315–1324

    Article  Google Scholar 

  • Berrill JP, O’Hara KL (2014) Estimating site productivity in irregular stand structures by indexing basal area or volume increment of the dominant species. Can J For Res 44(1):92–100

    Article  Google Scholar 

  • Bielak K, Dudzinska M, Pretzsch H (2014) Mixed stands of Scots pine (Pinus sylvestris L.) and Norway spruce [Picea abies (L.) Karst] can be more productive than monocultures. Evidence from over 100 years of observation of long-term experiments. For Syst 23(3):573–589

    Google Scholar 

  • Bielak K, Dudzińska M, Pretzsch H (2015) Volume growth of mixed-species versus pure stands: results from selected long-term experimental plots in Central Europe. Sylwan 159(1):22–35

    Google Scholar 

  • Biging GS, Dobbertin M (1992) A comparison of distance-dependent competition measures for height and basal area growth of individual conifer trees. For Sci 38(3):695–720

    Google Scholar 

  • Binkley D (2004) A hypothesis about the interaction of tree dominance and stand production through stand development. For Ecol Manag 190(2):265–271

    Article  Google Scholar 

  • Binkley D, Greene S (1983) Production in mixtures of conifers and red alder: the importance of site fertility and stand age. In: Ballard R, Gessel S (eds) IUFRO symposium on forest site and continuous productivity. US Dep Agric For Serv Gen Tech Rep PNW-163:112–117

  • Binkley D, Senock R, Bird S, Cole T (2003) Twenty years of stand development in pure and mixed stands of Eucalyptus saligna and nitrogen-fixing Falcataria mollucana. For Ecol Manag 182:93–102

    Article  Google Scholar 

  • Binkley D, Kashian DM, Boyden S, Kaye MW, Bradford JB, Arthur MA, Fornwalt PJ, Ryna MG (2006) Patterns of growth dominance in forests of the Rocky Mountains, USA. For Ecol Manag 236(2):193–201

    Article  Google Scholar 

  • Bollandsas OM, Buongiorno J, Gobakken T (2008) Predicting the growth of stands of trees of mixed species and size: a matrix model for Norway. Scand J For Res 23(2):167–178

    Article  Google Scholar 

  • Bolte A, Ammer C, Löf M, Madsen P, Nabuurs GJ, Schall P, Spathelf P, Rock J (2009) Adaptive forest management in central Europe: climate change impacts, strategies and integrative concept. Scand J For Res 24:473–482

    Article  Google Scholar 

  • Bongers F (2001) Methods to assess tropical rain forest canopy structure: an overview. Plant Ecol 153:263–277

    Article  Google Scholar 

  • Bontemps JD, Bouriaud O (2013) Predictive approaches to forest site productivity: recent trends, challenges and future perspectives. Forestry 87:109–128

    Article  Google Scholar 

  • Borders BE, Souter RA, Bailey RL, Ware KD (1987) Percentile based distributions characterize forest stand tables. For Sci 33:570–576

    Google Scholar 

  • Bravo-Oviedo A, Pretzsch H, Ammer C, Andenmatten E, Barbati A, Barreiro S, Brang P, Bravo F, Coll L, Corona P, den Ouden J, Ducey MJ, Forrester DI, Giergiczny M, Jacobsen JB, Lesinski J, Löf M, Mason WL, Matovic B, Metslaid M, Morneau F, Motiejunaite J, O’Reilly C, Pach M, Ponette Q, del Río M, Short I, Skovsgaard JP, Soliño M, Spathelf P, Sterba H, Stojanovic D, Strelcova K, Svoboda M, Verheyen K, von Lüpke N (2014) European Mixed Forests: definition and research perspectives. For Syst 23:518–533

    Google Scholar 

  • Brokaw NV, Lent RA (1999) Vertical structure. In: Hunter ML Jr (ed) Maintaining biodiversity in forest ecosystems. Cambridge University Press, Cambridge

    Google Scholar 

  • Burkhart HE, Tomé M (2012) Modeling forest trees and stands. Springer, Dordrecht

    Book  Google Scholar 

  • Caspersen JP, Pacala SW (2001) Successional diversity and forest ecosystem function. Ecol Res 16:895–903

    Article  Google Scholar 

  • Charru M, Seynave I, Morneau F, Rivoire M, Bontemps JD (2012) Significant differences and curvilinearity in the self-thinning relationship of 11 temperate tree species assessed from forest inventory data. Ann For Sci 69:195–205

    Article  Google Scholar 

  • Chen HY, Klinka K, Mathey AH, Wang X, Varga P, Chourmouzis C (2003) Are mixed-species stands more productive than single-species stands: an empirical test of three forest types in British Columbia and Alberta. Can J For Res 33(7):1227–1237

    Article  Google Scholar 

  • Clapham AR (1936) Over-dispersion in grassland communities and the use of statistical methods in plant ecology. J Ecol 24:232–251

    Article  Google Scholar 

  • Clark J, Evans FC (1954) Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35:445–453

    Article  Google Scholar 

  • Condés S, del Rio M, Sterba H (2013) Mixing effect on volume growth of Fagus sylvatica and Pinus sylvestris is modulated by stand density. For Ecol Manag 292:86–95

    Article  Google Scholar 

  • Coomes DA, Allen RB (2007) Mortality and tree-size distributions in natural mixed-age forests. J Ecol 95:27–40

    Article  Google Scholar 

  • Dale MRT (1999) Spatial pattern analysis in plant ecology. Cambridge University Press, New York

    Book  Google Scholar 

  • David FN, Moore PG (1954) Notes on contagious distributions in plant populations. Ann Bot Lond 18:47–53

    Google Scholar 

  • De Camino R (1976) Zur Bestimmung der Bestandeshomogenität. Allgemeine Forst- und Jagdzeitung 147(2/3):54–58

    Google Scholar 

  • Dean TJ, Baldwin VC (1996) The relationship between Reineke’s stand-density index and physical stem mechanics. For Ecol Manag 81:25–34

    Article  Google Scholar 

  • del Río M, Sterba H (2009) Comparing volume growth in pure and mixed stands of Pinus sylvestris and Quercus pyrenaica. Ann For Sci 66:502

    Article  Google Scholar 

  • Dirnberger GF, Sterba H (2014) A comparison of different methods to estimate species proportions by area in mixed stands. For Syst 23(3):534–546

    Google Scholar 

  • Douglas JB (1975) Clustering and aggregation. Sankhya Ser B 37:398–417

    Google Scholar 

  • Droessler TD, Burk TE (1989) A test of nonparametric smoothing of diameter distributions. Scand J For Res 4:407–415

    Article  Google Scholar 

  • Drössler L, Övergaard R, Ekö PM, Gemmel P, Böhlenius H (2015) Early development of pure and mixed tree species plantations in Snogeholm, southern Sweden. Scand J For Res 30(4):304–316

    Google Scholar 

  • Ducey MJ, Knapp RA (2010) A stand density index for complex mixed species forests in the northeastern United States. For Ecol Manag 260(9):1613–1622

    Article  Google Scholar 

  • Edgar CB, Burk TE (2001) Productivity of aspen forests in northeastern Minnesota, USA, as related to stand composition and canopy structure. Can J For Res 31:1019–1029

    Article  Google Scholar 

  • Eriksson H, Johansson U, Kiviste A (1997) A site-index model for pure and mixed stands of Betula pendula and Betula pubescens in Sweden. Scand J For Res 12(2):149–156

    Article  Google Scholar 

  • Faliński JB (1986) Vegetation dynamics in temperate lowland primeval forest. Ecological studies in Białowieża forest, Geobotany 8. Junk, Dordrecht

  • Fisher RA, Thornton HG, Mackenzie WA (1922) The accuracy of the plating method of estimating the density of bacterial populations. Ann App Biol 9:325–359

    Article  Google Scholar 

  • Forrester DI (2014) The spatial and temporal dynamics of species interactions in mixed-species forests: from pattern to process. For Ecol Manag 312:282–292

    Article  Google Scholar 

  • Forrester DI, Albrecht AT (2014) Light absorption and light-use efficiency in mixtures of Abies alba and Picea abies along a productivity gradient. For Ecol Manag 328:94–102

    Article  Google Scholar 

  • Forrester DI, Pretzsch H (2015) On the strength of evidence when comparing ecosystem functions of mixtures with monocultures. For Ecol Manag. doi:10.1016/j.foreco.2015.08.016

    Google Scholar 

  • Forrester DI, Kohnle U, Albrecht AT, Bauhus J (2013) Complementarity in mixed-species stands of Abies alba and Picea abies varies with climate, site quality and stand density. For Ecol Manag 304:233–242

    Article  Google Scholar 

  • Füldner K (1995) Zur Strukturbeschreibung in Mischbeständen. Forstarchiv 66:235–240

    Google Scholar 

  • Gadow Kv (1993) Zur Bestandesbeschreibung in der Forsteinrichtung. Forst und Holz 48(21):602–606

    Google Scholar 

  • Gadow Kv, Hui GY (2002) Characterizing forest spatial structure and diversity. In: Björk L (ed) Sustainable forestry in temperate regions. Proceedings of the SUFOR international workshop April 7–9, 2002 in Lund, Sweden, pp 20–30

  • Gadow Kv, Hui GY, Albert M (1998) Das Winkelmass - ein Strukturparameter zur Beschreibung der Individualverteilung in Waldbeständen. Centralbl ges Forstwesen 115(1):1–9

    Google Scholar 

  • Gadow Kv, Zhang CY, Wehenkel C, Pommerening A, Corral-Rivas J, Korol M, Myklush S, Hui GY, Kiviste A, Zhao XH (2012) Forest structure and diversity. In: Pukkala T, Gadow Kv (eds) Continuous cover forestry. Book series managing forest ecosystems, vol 23. Springer, Berlin, pp 29–84

    Chapter  Google Scholar 

  • Gamfeldt L, Snäll T, Bagchi R, Jonsson M, Gustafsson L, Kjellander P, Ruiz-Jaen MC, Fröberg M, Stendahl J, Philipson CD (2013) Higher levels of multiple ecosystem services are found in forests with more tree species. Nat Commun 4:1340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garber SM, Maguire DA (2004) Stand productivity and development in two mixed-species spacing trials in the central Oregon Cascades. For Sci 50:92–105

    Google Scholar 

  • Garet J, Raulier F, Pothier D, Cumming SG (2012) Forest age class structures as indicators of sustainability in boreal forest: are we measuring them correctly? Ecol Indic 23:202–210

    Article  Google Scholar 

  • Getzin S, Dean C, He F, Trofymow JA, Wiegand K, Wiegand T (2006) Spatial patterns and competition of tree species in a Douglas-fir chronosequence on Vancouver Island. Ecography 29:671–682

    Article  Google Scholar 

  • Groot A, Adhikary S, Sharma M, Luckai N, Bell FW, Larocque GR (2014) Effect of species composition on the production rate and efficiency of young Picea glaucaPopulus tremuloides forests. For Ecol Manag 315:1–11

    Article  Google Scholar 

  • Gül AU, Misir M, Misir N, Yavuz H (2005) Calculation of uneven-aged stand structures with the negative exponential diameter distribution and Sterb’s modified competition density rule. For Ecol Manag 214:212–220

    Article  Google Scholar 

  • Haara A, Maltamo M, Tokola T (1997) The K-nearest-neighbour method for estimating basal-area diameter distribution. Scand J For Res 12(2):200–208

    Article  Google Scholar 

  • Hanewinkel M (2004) Spatial patterns in mixed coniferous even-aged, uneven-aged and conversion stands. Eur J For Res 123:139–155

    Google Scholar 

  • Hara T (1992) Effects of the mode of competition on stationary size distribution in plant populations. Ann Bot 69(6):509–513

    Google Scholar 

  • Hara T (1993) Mode of competition and size-structure dynamics in plant communities. Plant Species Biol 8(2–3):75–84

    Article  Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic Press, London

    Google Scholar 

  • Hein S, Dhôte JF (2006) Effect of species composition, stand density and site index on the basal area increment of oak trees (Quercus sp) in mixed stands with beech (Fagus sylvatica L) in northern France. Ann For Sci 63:457–467

    Article  Google Scholar 

  • Helms JA (ed) (1998) The dictionary of forestry. Society of American Foresters, Bethesda

    Google Scholar 

  • Huang S, Titus SJ (1993) An index of site productivity for uneven-aged or mixed-species stands. Can J For Res 23(3):558–562

    Article  Google Scholar 

  • Huber MO, Sterba H, Bernhard L (2014) Site conditions and definition of compositional proportion modify mixture effects in Picea abiesAbies alba stands. Can J For Res 44(10):1281–1291

    Article  Google Scholar 

  • Hui GY, Zhao XH, Zhao ZH, Kv Gadow (2011) Evaluating tree species spatial diversity based on neighborhood relationships. For Sci 57(4):292–300

    Google Scholar 

  • Jactel H, Nicoll BC, Branco M, Gonzalez-Olabarria JR, Grodzki W, Långström B, Moreira F et al (2009) The influences of forest stand management on biotic and abiotic risks of damage. Ann For Sci 66(7):701

    Article  Google Scholar 

  • Jaehne S, Dohrenbusch A (1997) Ein Verfahren zur Beurteilung der Bestandesdiversität. Forstwissenshaftliches Centralblatt 116:333–345

    Article  Google Scholar 

  • Johann K (1993) DESER-Norm 1993 Normen der Sektion Ertragskunde im Deutschen Verband Forstlicher Forschungsanstalten zur Aufbereitung von waldwachstumskundlichen Dauerversuchen. Proc Dt Verb Forstl Forschungsanst, Sek Ertragskd, in Unterreichenbach-Kapfenhardt, pp 96–104

  • Katholnig L (2012) Growth dominance and Gini-Index in even-aged and in uneven-aged forests, Master thesis, University of Natural Resources and Applied Life Sciences, BoKu, Vienna, 67 p

  • Keller W (1995) Zur Oberhöhenberechnung in Mischbeständen aus standortskundlicher Sicht. Vorträge bei der Tagung d. Sektion Ertragskunde d. Deutschen Verbandes Forstl. Forshungsanst. Joachimstal

  • Kelty MJ (1992) Comparative productivity of monocultures and mixed stands. In: Kelty MJ, Larson BC, Oliver MJ (eds) The ecology and silviculture of mixed-species forests. Kluwer Academic Publishers, Dordrecht, pp 125–141

    Chapter  Google Scholar 

  • Kelty MJ, Cameron IR (1995) Plot designs for the analysis of species interactions in mixed stands. Commonw For Rev 74:322–332

    Google Scholar 

  • Kennel R (1972) Die Buchendurchforstungsversuche in Bayern Forschber FFA Münschen, 7

  • Knapp E (1991) Zur Wuchsleistung der Unterbaubuche im ungleichaltrigen Kiefern-Buchen-Mischbestand vor und nach ihrer Übernahme als Hauptbestand auf Standorten des norostdeutschen Tieflandes. Bericht von der Jahrestagung 1991 der Sektion Ertragskunde im Deutschen Verband Forstlicher Forschungsanstalten in Treis-Karden/Mosel, pp 96–110

  • Knoke T, Ammer C, Stimm B, Mosandl R (2008) Admixing broadleaved to coniferous tree species: a review on yield, ecological stability and economics. Eur J For Res 127:89–101

    Article  Google Scholar 

  • Köhl M, Traub B, Päivinen R (2000) Harmonisation and standardisation in multi-national environmental statistics—mission impossible? Environ Monit Assess 63:361–380

    Article  Google Scholar 

  • Kolström M, Lindner M, Vilén T, Maroschek M, Seidl R, Lexer MJ, Netherer S, Kremer A, Delzon S, Barbati A, Marchetti M, Corona P (2011) Reviewing the science and implementation of climate change adaptation measures in European forestry. Forests 2:961–982

    Article  Google Scholar 

  • Körner C (2002) Ökologie. In: Sitte P, Weiler EW, Kadereit JW, Bresinsky A, Körner C (eds) Strasburger Lehrbuch für Botanik, 35th edn. Spektrum Akademischer Verlag, Heidelberg, Berlin, pp 886–1043

    Google Scholar 

  • Kuuluvainen T, Penttinen A, Leinonen K, Nygren M (1996) Statistical opportunities for comparing stand structural heterogeneity in managed and primeval forests: an example from boreal spruce forest in southern Finland. Silva Fenna 30:315–328

    Article  Google Scholar 

  • Langhammer A (1971) Noen glimt fra blandingsskogen. Tidsskr Skogbruk 79:302–314

    Google Scholar 

  • Langsæter A (1941) Om tynning i enaldret gran- og furuskog. Meddelelser fra Det norske skogforsøksvesen 8:131–216

    Google Scholar 

  • Larson BC (1992) Pathways of development in mixed-species stands. In: Kelty MJ, Larson BC, Oliver MJ (eds) The ecology and silviculture of mixed-species forests. Kluwer Academic Publishers, Dordrecht, pp 3–10

    Chapter  Google Scholar 

  • Latham PA, Zuuring HR, Coble DW (1998) A method for quantifying vertical forest structure. For Ecol Manag 104:157–170

    Article  Google Scholar 

  • Lee WK, von Gadow K, Chung DJ, Lee JL, Shin MY (2004) DBH growth model for Pinus densiflora and Quercus variabilis mixed forests in central Korea. Ecol Model 176(1):187–200

    Article  Google Scholar 

  • Lei XD, Wang WF, Peng CH (2009) Relationships between stand growth and structural diversity in spruce-dominated forests in New Brunswick, Canada. Can J For Res 39(10):1835–1847

    Article  Google Scholar 

  • Leikola M (1999) Definition and classification of mixed forests, with a special emphasis on boreal forests. In: Olsthoorn AFM, Bartelink HH, Gardiner JJ, Pretzsch H, Hekhuis HJ, Franc A (eds) Management of mixed-species forest: silviculture and economics. Wageningen, DLO Institute of Forestry and Nature Research, pp 20–28

    Google Scholar 

  • Lewandowski A, Pommerening A (1997) Zur Beschreibung der Waldstruktur – Erwartete und beobachtete Arten-Durchmischung. Forstw Cbl 116:129–139

    Article  Google Scholar 

  • Liang J, Buongiorno J, Monserud RA, Kruger EL, Zhou M (2007) Effects of diversity of tree species and size on forest basal area growth, recruitment, and mortality. For Ecol Manag 243(1):116

    Article  Google Scholar 

  • Liu C, Zhang L, Davis CJ, Solomon DS, Gove JH (2002) A finite mixture model for characterizing the diameter distributions of mixed-species forest stands. For Sci 48(4):653–661

    Google Scholar 

  • Liu F, Li F, Zhang L, Jin X (2014) Modeling diameter distributions of mixed-species forest stands. Scand J For Res 29(7):653–663

    Article  Google Scholar 

  • Lloyd M (1967) Mean crowding. J Anim Ecol 36:1–30

    Article  Google Scholar 

  • Long JN, Daniel TW (1990) Assessment of growing stock in uneven-aged stands. West J Appl For 5:93–96

    Google Scholar 

  • Lotka AJ (1932) Contribution to the mathematical theory of capture: I Conditions for capture. Proc Natl Acad Sci USA 18(2):172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • MacArthur RH, MacArthur JW (1961) On bird species diversity. Ecology 42:594–598

    Article  Google Scholar 

  • MacFarlane DW, Green EJ, Burkhart HE (2000) Population density influences assessment and application of site index. Can J For Res 30(9):1472–1475

    Article  Google Scholar 

  • Magurran AE (1988) Ecological diversity and its measurement. Princeton University Press, Princeton

    Book  Google Scholar 

  • Maltamo M, Kangas A (1998) Methods based on k-nearest neighbor regression in the prediction of basal area diameter distribution. Can J For Res 28(8):1107–1115

    Article  Google Scholar 

  • McElhinny C, Gibbons P, Brack C, Bauhus J (2005) Forest and woodland stand structural complexity: its definition and measurement. For Ecol Manag 218:1–24

    Article  Google Scholar 

  • Menalled FD, Kelty MJ, Ewel JJ (1998) Canopy development in tropical tree plantations: a comparison of species mixtures and monocultures. For Ecol Manag 104:249–263

    Article  Google Scholar 

  • Mitscherlich G (1970) Wald, Wachstum und Umwelt. 1. Band, Form und Wachstum von Baum und Bestand. JD Sauerländer’s Verlag, Frankfurt am Main

  • Morisita M (1959) Measuring of the dispersion and analysis of distribution patterns. Mem Fac Sci Kyushu Univ Ser E Biol 2:215–235

    Google Scholar 

  • Ngo Bieng MA, Perot T, de Coligny F, Goreaud F (2013) Spatial pattern of trees influences species productivity in a mature oak–pine mixed forest. Eur J For Res 132:841–850

    Article  Google Scholar 

  • Nieuwenhuis M (2000) Terminology of forest management. IUFRO World Series Vol 9-en IUFRO 40407 SilvaPlan and SilvaVoc

  • Nigh G (2002) Site index conversion equations for mixed trembling aspen and white spruce stands in northern British Columbia. Silva Fenn 36(4):789–797

    Article  Google Scholar 

  • O’Hara KL, Lähde E, Laiho O, Norokorpi Y, Saksa T (2001) Leaf area allocation as a guide to stocking control in multi-aged, mixed-conifer forests in southern Finland. Forestry 74:171–185

    Article  Google Scholar 

  • Oliver CD, Larson BC (1996) Forest stand dynamics. Wiley, New York

    Google Scholar 

  • Oliver C, Boydak M, Segura G, Bare B (1999) Forest organization, management and policy. In: Hunter ML Jr (ed) Maintaining biodiversity in forest ecosystems. Cambridge University Press, Cambridge, pp 556–598

    Chapter  Google Scholar 

  • Pach M, Podlaski R (2015) Tree diameter structural diversity in Central European forests with Abies alba and Fagus sylvatica: managed versus unmanaged forest stands. Ecol Res 30(2):367–384

    Article  Google Scholar 

  • Palahí M, Pukkala T, Kasimiadis D, Poirazidis K, Papageorgiou AC (2008) Modelling site quality and individual-tree growth in pure and mixed Pinus brutia stands in north-east Greece. Ann For Sci 65(5):501

    Article  Google Scholar 

  • Paluch JG (2007) The spatial pattern of a natural European beech (Fagus sylvatica L)–silver fir (Abies alba Mill) forest: a patch-mosaic perspective. For Ecol Manag 253:161–170

    Article  Google Scholar 

  • Paquette A, Messier C (2011) The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob Ecol Biogeogr 20:170–180

    Article  Google Scholar 

  • Parker GG, Brown MJ (2000) Forest canopy stratification: is it useful? Am Nat 155:473–484

    Article  PubMed  Google Scholar 

  • Peterken GF (1996) Natural woodland: ecology and conservation in northern temperate regions. Cambridge University Press, Cambridge

    Google Scholar 

  • Pielou EC (1959) The use of point to plant distances in the study of the pattern of plant populations. J Ecol 47:607–613

    Article  Google Scholar 

  • Pielou EC (1977) Mathematical ecology. Wiley, New York

    Google Scholar 

  • Pinto PE, Gégout JC, Hervé JC, Dhôte JF (2008) Respective importance of ecological conditions and stand composition on Abies alba Mill dominant height growth. For Ecol Manag 255:619–629

    Article  Google Scholar 

  • Poage NJ, Marshall DD, McClellan MH (2007) Maximum stand density index of 40 western Hemlock-Sitka spruce stands on southeast Alaska. West J Appl For 22(2):99–104

    Google Scholar 

  • Podlaski R, Roesch FA (2014) Modelling diameter distributions of two-cohort forest stands with various proportions of dominant species: a two-component mixture model approach. Math Biosci 249:60–74

    Article  PubMed  Google Scholar 

  • Pommerening A (2002) Approaches to quantifying forest structures. Forestry 75(3):305–324

    Article  Google Scholar 

  • Pretzsch H (1995a) Zum Einfluss des Baumverteilungsmusters auf den Bestandeszuwachs. AFJZ 166(9/10):190–201

  • Pretzsch H (1995b) Analyse und Reproduktion räumlicher Bestandesstrukturen Methodische Überlegungen am Beispiel niedersächsischer Buchen-Lärchen-Mischbestände. Centralblatt für das gesamte Forstwesen 112(2):91–117

    Google Scholar 

  • Pretzsch H (2002) Dichte und Wachstum in Rein- und Mischbeständen aus Fichte und Buche. Jahrestagung der Sektion Ertragskunde im Deutschen Verband Forstlicher Forschungsanstalten in Schwarzburg, Tagungsbericht, S 84–101

  • Pretzsch H (2003) The elasticity of growth in pure and mixed stands of Norway spruce (Picea abies [L] Karst) and common beech (Fagus sylvatica L). J For Sci 49:491–501

    Google Scholar 

  • Pretzsch H (2005) Diversity and productivity in forests: evidence from long-term experimental plots. In: Scherer-Lorenzen M, Körner C, Schulze ED (eds) Forest diversity and function. Ecol Stud 176. Springer, Berlin, pp 41–64

    Chapter  Google Scholar 

  • Pretzsch H (2009) Forest dynamics, growth and yield. Springer, Berlin

    Book  Google Scholar 

  • Pretzsch H (2014) Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. For Ecol Manag 327:251–264

    Article  Google Scholar 

  • Pretzsch H, Biber P (2005) A re-evaluation of Reineke’s rule and stand density index. For Sci 51:304–320

    Google Scholar 

  • Pretzsch H, Biber P (2010) Size-symmetric versus size-asymmetric competition and growth partitioning among trees in forest stands along an ecological gradient in central Europe. Can J For Res 40:370–384

    Article  Google Scholar 

  • Pretzsch H, Schütze G (2009) Transgressive overyielding in mixed compared with pure stands of Norway spruce and European beech in Central Europe: evidence on stand level and explanation on individual tree level. Eur J For Res 128:183–204

    Article  Google Scholar 

  • Pretzsch H, Schütze G (2014) Size-structure dynamics of mixed versus pure forest stands. For Syst 23(3):560–572

    Google Scholar 

  • Pretzsch H, Schütze G (2015) Effect of tree species mixing on the size structure, density and yield forest stands. Eur J For Res. doi:10.1007/s10342-015-0913-z

    Google Scholar 

  • Pretzsch H, Biber P, Ďrský J (2002) The single tree based stand simulator SILVA Construction, application and evaluation. For Ecol Manag 162:3–21

    Article  Google Scholar 

  • Pretzsch H, Block J, Dieler J, Dong PH, Kohnle U, Nagel J, Spellmann H, Zingg A (2010) Comparison between the productivity of pure and mixed stands of Norway spruce and European been along an ecological gradient. Ann For Sci 67:712

    Article  Google Scholar 

  • Pretzsch H, Dieler J, Seifert T, Rötzer T (2012a) Climate effects on productivity and resource-use efficiency of Norway spruce (Picea abies [L] Karst) and European beech (Fagus sylvatica [L]) in stands with different spatial mixing patterns. Trees 26:1343–1360

    Article  Google Scholar 

  • Pretzsch H, Matthew C, Dieler J (2012b) Allometry of tree crown structure. Relevance for space occupation at the individual plant level and for self-thinning at the stand level. In: Matyssek R, Schnyder H, Oßwald W, Ernst D, Ch Munch J, Pretzsch H (eds) Growth and defence in plants. Ecol Stud 220. Springer, Berlin, pp 287–310

    Chapter  Google Scholar 

  • Pretzsch H, Bielak K, Block J, Bruchwald A, Dieler J, Ehrhart HP, Kohnle U, Nagel J, Spellmann H, Zasada M, Zingg A (2013) Productivity of mixed versus pure stands of oak (Quercus petraea (Matt) Liebl and Quercus robur L) and European beech (Fagus sylvatica L) along an ecological gradient. Eur J For Res 132(2):263–280

    Article  Google Scholar 

  • Pretzsch H, Biber P, von Gadow K (2015a) Ernst Assmann: a German pioneer in forest production ecology and quantitative silviculture. Eur J For Res 134(3):391–402

    Article  Google Scholar 

  • Pretzsch H, del Río M, Ammer Ch, Avdagic A, Barbeito I, Bielak K, Brazaitis G, Coll L, Dirnberger G, Drössler L, Fabrika M, Forrester DI, Godvod K, Heym M, Hurt V, Kurylyak V, Löf M, Lombardi F, Matović B, Mohren F, Motta R, den Ouden J, Pach M, Ponette Q, Schütze G, Schweig J, Skrzyszewski J, Sramek V, Sterba H, Stojanović D, Svoboda M, Vanhellemont M, Verheyen K, Wellhausen K, Zlatanov T, Bravo-Oviedo A (2015b) Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L) and European beech (Fagus sylvatica L) analysed along a productivity gradient through Europe. Eur J For Res 134(5):927–947

    Article  Google Scholar 

  • Prodan M (1968) Forest biometrics. Pergamon Press, Oxford

    Google Scholar 

  • Puettmann KJ, Hibbs DE, Hann DW (1992) The dynamics of mixed stands of Alnus rubra and Pseudotsuga menziesii: extension of size-density analysis to species mixture. J Ecol 80(3):449–458

    Article  Google Scholar 

  • Reineke LH (1933) Perfecting a stand-density index for even-aged forests. J Agric Res 46:627–638

    Google Scholar 

  • Reyes-Hernandez V, Comeau PG, Bokalo M (2013) Static and dynamic maximum size–density relationships for mixed trembling aspen and white spruce stands in western Canada. For Ecol Manag 289:300–311

    Article  Google Scholar 

  • Río M, Condés S, Pretzsch H (2014) Analyzing size-symmetric vs. size-asymmetric and intra-vs. inter-specific competition in beech (Fagus sylvatica L.) mixed stands. For Ecol Manage 325:90–98

    Article  Google Scholar 

  • Ritchie M, Zhang J, Hamilton T (2012) Effects of stand density on top height estimation for ponderosa pine. West J Appl For 27(1):18–24

    Google Scholar 

  • Rivoire M, Moguedec G (2012) A generalized self-thinning relationship for multi-species and mixed-size forests. Ann For Sci 69(2):207–219

    Article  Google Scholar 

  • Rötzer T (2013) Mixing patterns of tree species and their effects on resource allocation and growth in forest stands. Nova Acta Leopoldina NF 114:239–254

    Google Scholar 

  • Scherer-Lorenzen M, Schulze ED, Don A, Schumacher J, Weller E (2007) Exploring the functional significance of forest diversity: a new long-term experiment with temperate tree species (BIOTREE). Perspect Plant Ecol 9:53–70

    Article  Google Scholar 

  • Schütz J-Ph (1999) The principle of functioning of mixed fores stands, experience of temperate Central European forest conditions. In: Olsthoorn et al (ed) Management of mixed-species forest: silviculture and economics IBN Scientific Contributions 15, Wageningen, pp 219–234

  • Schwinning S, Weiner S (1998) Mechanisms determining the degree of size asymmetry in competition among plants. Oecologia 113:447–455

    Article  Google Scholar 

  • Seidel D, Leuschner C, Scherber C, Beyer F, Wommelsdorf T, Cashman MJ, Fehrmann L (2013) The relationship between tree species richness, canopy space exploration and productivity in a temperate broad-leaf mixed forest. For Ecol Manag 310:366–374

    Article  Google Scholar 

  • Shannon CE (1949) The mathematical theory of communication. In: Shannon CE, Weaver W (eds) The mathematical theory of communication. University of Illinois Press, Urbana, pp 3–91

    Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature 163:688

    Article  Google Scholar 

  • Skovsgaard JP, Vanclay JK (2008) Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands. Forestry 81(1):13–31

    Article  Google Scholar 

  • Skovsgaard, JP O’Connor, E Graversgaard, HC Hochbichler, E Mohni, C Nicolescu N, Niemistö, P Pelleri, F Spiecker, H Stefancik I, Övergaard R (2006) Procedures for forest experiments and demonstration plots. Scientific report from a COST E42 meeting in Denmark 28–30 Nov 2006

  • Smith DM (1986) The practice of silviculture. Wiley, New York

    Google Scholar 

  • Staudhammer CL, LeMay VM (2001) Introduction and evaluation of possible indices of stand structural diversity. Can J For Res 31:1105–1115

    Article  Google Scholar 

  • Sterba H (1987) Estimating potential density from thinning experiments and inventory data. For Sci 33(4):1022–1034

    Google Scholar 

  • Sterba H (1991) Zur Schätzung der Flächenanteile der Baumarten in Wuchsreihen. Centralbl. ges. Forstwesen 108(3):297–308

    Google Scholar 

  • Sterba H (1996) Oberhöhendefinition in gleichaltrigen Mischbeständen. Schweiz Z Forstw 147:109–120

    Google Scholar 

  • Sterba H (1998) The precision of species proportion by area when estimated by angle counts and yield tables. Forestry 71(1):25–32

    Article  Google Scholar 

  • Sterba H, Monserud RA (1993) The maximum density concept applied to uneven-aged mixed-species stands. For Sci 39:432–452

    Google Scholar 

  • Sterba H, del Río M, Brunner A, Condes S (2014) Effect of species proportion definition on the evaluation of growth in pure vs mixed stands. For Syst 23(3):547–559

    Google Scholar 

  • Szwagrzyk J, Czerwczak M (1993) Spatial patterns of trees in natural forests of East-Central Europe. J Veg Sci 4:469–476

    Article  Google Scholar 

  • Szwagrzyk J, Gazda A (2007) Above-ground standing biomass and tree species diversity in natural stands of Central Europe. J Veg Sci 18(4):555–562

    Article  Google Scholar 

  • Temesgen H, Gadow Kv (2004) Generalised height-diameter models—an application for major tree species in complex stands of interior British Columbia. Eur J For Res 123:45–51

    Article  Google Scholar 

  • Toïgo M, Vallet P, Perot T, Bontemps JD, Piedally C, Courbaud B (2015) Overyielding in mixed forests decreases with site productivity. J Ecol 103:502–512

    Article  Google Scholar 

  • Tomé J, Tomé M, Barreiro S, Paulo JA (2006) Age-independent difference equations for modelling tree and stand growth. Can J For Res 36:1621–1630

    Article  Google Scholar 

  • Trasobares A, Pukkala T, Miina J (2004a) Growth and yield model for uneven-aged mixtures of Pinus sylvestris L and Pinus nigra Arn in Catalonia, north-east Spain. Ann For Sci 61:9–24

    Article  Google Scholar 

  • Trasobares A, Tomé M, Miina J (2004b) Growth and yield model for Pinus halepensis Mill in Catalonia, north-east Spain. For Ecol Manag 203:49–62

    Article  Google Scholar 

  • Vallet P, Perot T (2011) Silver fir stand productivity is enhanced when mixed with Norway spruce: evidence based on large-scale inventory data and a generic modelling approach. J Veg Sci 22(5):932–942

    Article  Google Scholar 

  • van Soest J, Ayral P, Schober R, Hummel FC (1965) The standardization of symbols in forest mensuration. International Union of Forestry Research Organizations Approved by IUFRO 1956, originally published 1959, and reprinted 1965 by University of Maine as Technical Bulletin no 15 of Maine Agricultural Experiment Station

  • Vanclay JK (1992) Assessing site productivity in tropical moist forests: a review. For Ecol Manag 54:257–287

    Article  Google Scholar 

  • Vanclay JK (1994) Modelling forest growth and yield: applications to mixed tropical forests. CAB International, Wallingford

    Google Scholar 

  • Vanclay JK (2006) Experiment designs to evaluate inter- and intra-specific interactions in mixed plantings of forest trees. For Ecol Manag 233:366–374

    Article  Google Scholar 

  • Vanclay JK, Henry NB (1988) Assessing site productivity of indigenous cypress pine forest in southern Queensland. Commonw For Rev 67:53–64

    Google Scholar 

  • Vandermeer J (1989) The ecology of Intercropping. Cambrige University Press, Cambridge

    Book  Google Scholar 

  • Varga P, Chen HYH, Klinka K (2005) Tree-size diversity between single- and mixed-species stands in three types in western Canada. Can J For Res 35:593–601

    Article  Google Scholar 

  • Vilà M, Inchausti P, Vayreda J, Barrantes O, Gracia C, Ibáñez JJ, Mata T (2005) Confounding factors of the association between tree diversity and stemwood production. In: Scherer-Lorenzen M, Körner C, Schulze ED (eds) Forest diversity and function. Ecol Stud 176. Springer, Berlin, pp 65–86

    Chapter  Google Scholar 

  • Vilà M, Vayreda J, Comas L, Ibáñez JJ, Mata T, Obón B (2007) Species richness and wood production: a positive association in Mediterranean forests. Ecol Let 10:241–250

    Article  Google Scholar 

  • Vilà M, Carrillo-Gavilán A, Vayreda J, Bugmann H, Fridman J, Grodzki W, Haase J, Kunstler G, Schelhaas M, Trasobares A (2013) Disentangling biodiversity and climatic determinants of wood production. PLoS ONE 8:e53530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Volterra V (1926) Fluctuations in the abundance of a species considered mathematically. Nature 118:558–560

    Article  Google Scholar 

  • von Oheimb G, Westphal Ch, Tempel H, Härdtle W (2005) Structural pattern of a near-natural beech forest (Fagus sylvatica) (Serrahn, north-east Germany). For Ecol Manag 212:253–263

    Article  Google Scholar 

  • Vospernik S, Sterba H (2001) Neue Methoden zum Bonitieren. Österr Forstzeitung 112:18–19

    Google Scholar 

  • Vospernik S, Sterba H (2014) Do competition-density rule and self-thinning rule agree? Ann For Sci 72(3):379–390

    Article  Google Scholar 

  • Waskiewicz J, Kenefic L, Weiskittel A, Seumour R (2013) Species mixture effects in northern red oak-eastern white pine stands in Maine, USA. For Ecol Manag 298:71–81

    Article  Google Scholar 

  • Weiner J (1990) Asymmetric competition in plant populations. Trends Ecol Evol 5(11):360–364

    Article  PubMed  CAS  Google Scholar 

  • Weiner J, Freckleton RP (2010) Constant final yield. Ann Rev Ecol Evol Syst 41:173–192

    Article  Google Scholar 

  • Weiskittel AR, Hann DW, Hibbs DE, Lam TY, Bluhm AA (2009) Modeling top height growth of red alder plantations. For Ecol Manag 258:323–331

    Article  Google Scholar 

  • Weller DE (1987) A reevaluation of the -3/2 power rule of plant self-thinning. Ecol Monogr 57(1):23

    Article  Google Scholar 

  • Whittaker RJ (2010) Meta-analyses and mega-mistakes: calling time on meta-analysis of the species richness–productivity relationship. Ecology 91:2522–2533

    Article  PubMed  Google Scholar 

  • Wiedemann E (1951) Ertragskundliche und waldbauliche Grundlagen der Forstwirtschaft. JD Sauerländer‘s Verlag, Frankfurt am Main

  • Woodall CW, Miles PD, Vissage JS (2005) Determining maximum stand density index in mixed species stands for strategic-scale stocking assessments. For Ecol Manag 216(1–3):367–377

    Article  Google Scholar 

  • Woodall CW, D’Amato AW, Bradford JB, Finley AO (2011) Effects of stand and inter-specific stocking on maximizing standing tree carbon stocks in the eastern United States. For Sci 57(5):365–378

    Google Scholar 

  • Zeide B (1985) Tolerance and self-tolerance of trees. For Ecol Manag 13:149–166

    Article  Google Scholar 

  • Zeide B (2001) Thinning and growth: a full turnaround. J For 99(1):20–25

    Google Scholar 

  • Zenner EK, Hibbs D (2000) A new method for modeling the heterogeneity of forest structure. For Ecol Manag 129:75–87

    Article  Google Scholar 

  • Zenner EK, Peck JE, Hobi ML, Commarmot B (2015) The dynamics of structure across scale in a primaeval European beech stand. Forestry 88:180–189

    Article  Google Scholar 

  • Zhang L, Bi H, Gove JH, Heath LS (2005) A comparison of alternative methods for estimating the self-thinning boundary line. Can J For Res 35:1507–1514

    Article  Google Scholar 

  • Zhang Y, Chen HYH, Reich PB (2012) Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J Ecol 100(3):742–749

    Article  Google Scholar 

  • Ziegler SS (2000) A comparison of structural characteristics between old-growth and postfire second-growth hemlock–hardwood forests in Adirondack Park, New York, USA. Glob Ecol Biogeogr 9:373–389

    Article  Google Scholar 

  • Zingg A (1994) Top height in mixed stands. Their definition and calculation. In: Costa MEP, Preuhsler T (eds) Mixed stands research plots, measurements and results, models. Universidade Tecnica de Lisboa, Instituto Superior de Agronomia, Lisboa, pp 67–80

    Google Scholar 

Download references

Acknowledgments

The networking in this study has been supported by COST Action FP1206 EuMIXFOR. The first author also thanks the Spanish Ministry of Economy and Competitiveness for funding the research project “Mixed Forest complexity and sustainability: dynamic, silviculture and adaptive management tools” (AGL2014-51964-C2-2-R). We thank two anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miren del Río.

Additional information

Handling editor: Peter Biber.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

del Río, M., Pretzsch, H., Alberdi, I. et al. Characterization of the structure, dynamics, and productivity of mixed-species stands: review and perspectives. Eur J Forest Res 135, 23–49 (2016). https://doi.org/10.1007/s10342-015-0927-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-015-0927-6

Keywords

Navigation