Skip to main content
Log in

Variation in wood density and ring width in Acacia melanoxylon at four sites in Portugal

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

The radial variation in wood density in Acacia melanoxylon R. Br. was studied using microdensitometry by sampling 20 trees with a 40-cm diameter class at four sites in Portugal. The measurements were taken from pith to bark at breast height. A. melanoxylon had an average ring density of 0.607 g cm−3, ranging from 0.556 to 0.630 g cm−3. The mean growth was 6.0 mm year−1. Latewood corresponded, on average, to 34 % of the ring width. Between-tree variability at each site was the main source of variation in the density components, representing between 30 and 54 % of the total variation. Between-sites variability represented from 0 to 21 % of the total variation in density components. The environmental effects (site related) were more pronounced on latewood, while the genetic effect (tree related) was more evident in earlywood. Ring width, latewood percentage and heterogeneity index were independent from site, trees in site and age effects. The values of wood density and radial growth revealed that A. melanoxylon can be important as a commercial timber species in Portugal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Boland DJ, Brooker MIH, Chippendale GM, Hall N, Hyland BPM, Johnston RD, Kleinig DA, Turner JD (1999) Forest trees of Australia. CSIRO, Australia

    Google Scholar 

  • Bradbury GJ, Potts BM, Beadle CL (2010) Quantifying phenotypic variation in wood colour in Acacia melanoxylon R.Br. Forestry 83:153–162

    Article  Google Scholar 

  • Clark NB (2001) Longitudinal density variation in irrigated hardwoods. Appita J 54:50–55

    Google Scholar 

  • Core HA, Côté WA, Day AC (1979) Wood structure and identification, 2nd edn. Syracuse University Press, New York

    Google Scholar 

  • Decoux V, Varcin É, Leban J-M (2004) Relationships between the intra-ring wood density assessed by X-ray densitometry and optical anatomical measurements in conifers. Consequences for the cell wall apparent density determination. Ann For Sci 61:251–262

    Article  Google Scholar 

  • Degron R, Nepveu G (1996) Prévision de la variabilité intra- et interarbre de la densité du bois de chêne rouvre (Quercus petraea Liebl) par modélisation des largeurs et des densités des bois initial et final en fonction de l’âge cambial, de la largeur de cerne et du niveau dans l’arbre. Ann Sci For 53:1019–1030

    Article  Google Scholar 

  • Desch HE, Dinwoodie JM (1996) Timber, structure, properties, conversion and use, 7th edn. Macmillan Press Ltd, London

    Google Scholar 

  • Ferrand JC (1982) Réflexions sur la densité du bois. 2ère Partie: Calcul de la densité et de son hétérogénéité. Holzforsch 36:153–157

    Article  Google Scholar 

  • Fioravanti M (1995) Nature and occurrence of juvenile wood in chestnut (Castanea sativa Mill.), stems from coppice forest. For Méditerr XVI:58–66

    Google Scholar 

  • Gaspar M, Louzada J, Silva M, Aguiar A, Almeida H (2008) Age trends in genetic parameters of wood density components in 46 half-sibling families of Pinus pinaster Ait. Can J For Res 38:1470–1477

    Article  Google Scholar 

  • Goes E (1991) A floresta Portuguesa, sua importância e descrição das espécies de maior interesse. Ed. Portucel, Lisboa

    Google Scholar 

  • Gourlay ID (1995) The definition of seasonal growth zones in some African Acacia species—a review. IAWA J 16:353–359

    Google Scholar 

  • Gourlay ID, Barnes RB (1994) Seasonal growth zones in the wood of Acacia karro Hayne: their definition and implications. Commonw For Rev 73:121–127

    Google Scholar 

  • Gourlay ID, Kanowski PJ (1991) Marginal parenchyma bands and crystalliferous chains as indicators of age in African Acacia species. IAWA Bull 12:187–194

    Google Scholar 

  • Harris S (2004) Tropical ecosystems. In: Burley J, Evens J, Youngquist A (eds) Encyclopedia of forest sciences, vol 4. Elsevier, Amsterdam, pp 1668–1674

    Chapter  Google Scholar 

  • Harris JM, Young GD (1988) Wood properties of eucalypts and blackwood grown in New Zealand. In: International forestry conference for the Australian bicentennary. Albury-Wodonga, AFDI vol II, p 8

  • Igartúa DV, Monteoliva S, Piter JC (2009) Estudio de algunas propriedades físicas de la madera de Acacia melanoxylon R. Br. en Argentina. Maderas Cienc y Tecnol 11:3–18

    Google Scholar 

  • Ilic J, Boland D, McDonald M, Downes G, Blakemore P (2000) Wood density phase I—State of knowledge, national carbon accounting system. Australian greenhouse office, commonw of Australia. Tech Rep No. 18. In: Searle S D, Owen JV (2005) Variation in basic density and percentage heartwood in temperate Australian Acacia species. Aust For 68:126–136

    Google Scholar 

  • Jennings SM, Hichey JE, Candy SG (2000) Comparison of regeneration success of alternative silvicultural treatments in blackwood swamps. Tasforests 12:55–68

    Google Scholar 

  • Jorge MFCTF (1994) Variabilidade anatómica, física e química da madeira da Eucalyptus globulus Labill. Dissertation, Universidade Técnica de Lisboa

  • Karki T (2001) Variation of wood density and shrinkage in European aspen (Populus tremula). Holz als Roh- und Werkstoff 59:79–84

    Article  Google Scholar 

  • Kholik A, Marsoem N (2002) The physical properties and fiber dimensions of Acacia auriculiformis breeding trees. IAWA J 23:468

    Google Scholar 

  • Knapic S, Tavares F, Pereira H (2006) Heartwood and sapwood variation in Acacia melanoxylon R. Br. trees in Portugal. Forestry 79:371–380

    Article  Google Scholar 

  • Koubaa A, Zhang SYT, Makni S (2002) Defining the transition from earlywood to latewood in black spruce based on intra-ring wood density profiles from X-ray densitometry. Ann For Sci 59:511–518

    Article  Google Scholar 

  • Lemmens RJ (2006) Acacia melanoxylon R.Br. In: Louppe D, Oteng-Amoako AA, Brink M (eds) Prota 7(1): timbers/Bois d’œuvre 1. [CD-Rom]. PROTA, Wageningen, Netherlands

    Google Scholar 

  • Lourenço A, Baptista I, Gominho J, Pereira H (2008) The influence of heartwood on the pulping properties of Acacia melanoxylon wood. J Wood Sci 54:464–469

    Article  Google Scholar 

  • Louzada J (2003) Genetic correlations between wood density components in Pinus pinaster Ait. Ann For Sci 60:285–294

    Article  Google Scholar 

  • Medhurst JL, Pinkard EA, Beadle CL, Worledge D (2003) Growth and stem form responses of plantation-grown Acacia melanoxylon (R. Br.) to form pruning and nurse-crop thinning. For Ecol Manag 179:183–193

    Article  Google Scholar 

  • Monteoliva S, Iguartúa DV (2008) Morfologia fibrosa, composición química y densidad de Acacia melanoxylon. Estudios preliminares sobre el recurso en Argentina. V Congresso Iberoamericano de Investigacion en Celulosa y Papel. CIADICYP. Octubre. Guadalajara, Jalisco, México, pp 10

  • Mothe F, Sciama D, Leban J-M, Nepveu G (1998) Localisation de la transition bois initial-bois final dans un cerne de chêne par analyse microdensitométrique. Ann For Sci 55:437–449

    Article  Google Scholar 

  • Polge H (1966) Établissement des courbes de variation de la densité du bois par exploration densitométrique de radiographies d’échantillons prélevés à la tarière sur des arbres vivants—Applications dans les domaines technologique et physiologique. Ann Sci For XXIII Fasc 1, pp 206

  • Polge H (1978) Fifteen years of wood radiation densitometry. Wood Sci Technol 12:187–196

    Article  Google Scholar 

  • Quintanar Isaías A , Velazquez Nunez M , Solares Arenas F , Olvera C de la Paz Perez, Torre-Blanco A (2005) Secondary stem anatomy and uses of four drought-deciduous species of a tropical dry forest in México. Rev Biol Trop 5:29–48

  • Rathgerer CKR, Decoux V, Leban J-M (2006) Linking intra-tree-ring wood density variations and tracheid anatomical characteristics in Douglas fir (Pseudotsuga menziesii (Mirb.) Franco). Ann For Sci 63:699–706

    Article  Google Scholar 

  • Ridder MD, Bulcke JV, Vansteenkiste D, Loo DV, Dierick M, Masschaele B, Witte YD, Mannes D, Lehmann E, Beeckman H, Hoorebeke LC, Acker JV (2011) High-resolution proxies for wood density variations in Terminalia superba. Ann Bot 107:293–302

    Article  PubMed  Google Scholar 

  • Rozenberg P, Franc A, Cahalan C (2001) Incorporating wood density in breeding programs for softwoods in Europe: a strategy and associated methods. Silvae Genet 50:1–7

    Google Scholar 

  • Santos AJA, Anjos OMS, Simões RMS (2006) Papermaking potential of Acacia dealbata and Acacia melanoxylon. Appita J 59:58–64

    CAS  Google Scholar 

  • Schonau APG (1982) The relationship between timber density of black wattle and fertilizing, stocking and growth rate. Wattle Res Inst Rep 1981–1982:114–119

  • Searle SD, Owen JV (2005) Variation in basic wood density and percentage heartwood in temperate Australian Acacia species. Aust For 68:126–136

    Article  Google Scholar 

  • Tavares M, Campos J, Saporiti J, Daniel C (1999) Formas de valorização do material lenhoso das Acacia dealbata, A melanoxylon e A. longifolia. In: 1º Encontro sobre invasoras lenhosas, Gerês, Sociedade Portuguesa de Ciências Florestais, Lisboa, pp 157–170, 16–18 Nov 1999

  • Tavares F, Quilhó T, Pereira H (2011) Wood and bark fibre characteristics of Acacia melanoxylon and comparation to Eucalyptus globulus. Cerne 17:61–68

    Google Scholar 

  • Tsoumis G (1991) Science and technology of wood: structure, properties, utilization. Van Nostrand Reinhold, New York

    Google Scholar 

  • Vale AT, Brasil MAM, Martins IS (1999) Variação radial da densidade básica da madeira de Acacia mangium Willd aos sete anos de idade. Ciênc Florest 9:85–92

    Google Scholar 

  • Veenin T, Fujita M, Nobuchi T, Siripatanadilok S (2005) Radial variations of anatomical characteristics and specific gravity in Eucalyptus camaldulensis clones. IAWA J 26:353–361

    Article  Google Scholar 

  • Wilkins AP, Papassotiriou S (1989) Wood anatomical variation of Acacia melanoxylon in relation to latitude. IAWA J 10:201–207

    Google Scholar 

  • Woodcock DW, Shier AD (2002) Wood specific gravity and its radial variations: the many ways to make a tree. Trees 16:437–443

    Article  Google Scholar 

  • Zobel BJ, van Buijtenen JP (1989) Wood variation, its causes and control. Springer-Verlag, Berlin

    Book  Google Scholar 

Download references

Acknowledgments

The authors thank Mário Tavares, who selected the stands and supplied site information; Sofia Knapic who harvested the trees and Armindo Teixeira, who prepared the samples for X-ray. This work was supported by Fundação para a Ciência e Tecnologia (Portugal), through Program Fundo Europeu de Desenvolvimento Regional/Programa Operacional “Ciência, Tecnologia Inovação” (FEDER/POCTI) to Centro de Estudos Florestais and Project AGR/42594/2001.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Tavares.

Additional information

Communicated by T. Seifert and M. Meincken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavares, F., Louzada, J.L. & Pereira, H. Variation in wood density and ring width in Acacia melanoxylon at four sites in Portugal. Eur J Forest Res 133, 31–39 (2014). https://doi.org/10.1007/s10342-013-0733-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-013-0733-y

Keywords

Navigation