Skip to main content

Advertisement

Log in

Combining ALS and NFI training data for forest management planning: a case study in Kuortane, Western Finland

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Forest inventories based on airborne laser scanning (ALS) have already become common practice in the Nordic countries. One possibility for improving their cost effectiveness is to use existing field data sets as training data. One alternative in Finland would be the use of National Forest Inventory (NFI) sample plots, which are truncated angle count (relascope) plots. This possibility is tested here by using a training data set based on measurements similar to the Finnish NFI. Tree species-specific stand attributes were predicted by the non-parametric k most similar neighbour (k-MSN) approach, utilising both ALS and aerial photograph data. The stand attributes considered were volume, basal area, stem number, mean age of the tree stock, diameter and height of the basal area median tree, determined separately for Scots pine, Norway spruce and deciduous trees. The results obtained were compared with those obtained when using training data based on observations from fixed area plots with the same centre point location as the NFI plots. The results indicated that the accuracy of the estimates of stand attributes derived by using NFI training data was close to that of the fixed area plot training data but that the NFI sampling scheme and the georeferencing of the plots can cause problems in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andersen H-E, Breidenbach J (2007) Statistical properties of mean stand biomass estimators in a lidar-based double sampling forest survey. In: Rönnholm P, Hyyppä H, Hyyppä J (eds) Proceedings of ISPRS workshop laser scanning 2007 and Silvilaser 2007, September 12–14, 2007, Finland. International archives of photogrammetry, remote sensing and spatial information sciences, vol XXXVI, Part 3/W52, pp 8–13

  • Axelsson P (2000) DEM Generation from laser scanner data using adaptive TIN models. Int Arch Photogramm Remote Sens 33(Pt B4):110–117

    Google Scholar 

  • Bitterlich W (1984) The relascope idea. Commonwealth Agricultural Bureaux, Farnham royal, 242p

  • Breidenbach J, McGaughey RJ, Andersen H-E, Kändler G, Reutebach SE (2007) A mixed-effects model to estimate stand volume by means of small footprint airborne lidar data for an American and a German study site. In: Rönnholm P, Hyyppä H, Hyyppä J (eds) Proceedings of ISPRS workshop laser scanning 2007 and Silvilaser 2007, September 12–14, 2007, Finland. International archives of photogrammetry, remote sensing and spatial information sciences, vol XXXVI, Part 3/W52, pp 77–83

  • Eid T, Gobakken T, Naesset E (2004) Comparing stand inventories based on photo interpretation and laser scanning by means of cost-plus-loss analyses. Scand J For Res 19:512–523. doi:10.1080/02827580410019463

    Article  Google Scholar 

  • Finley AO, McRoberts RE, Ek AR (2006) Applying an efficient k-nearest neighbor search to forest attribute imputation. For Sci 52:130–135

    Google Scholar 

  • Gobakken T, Naesset E (2007) Assessing effects of laser point density on biophysical stand properties derived from airborne laser scanner data in mature forest. In: Rönnholm P, Hyyppä H, Hyyppä J (eds) Proceedings of ISPRS workshop laser scanning 2007 and Silvilaser 2007, September 12–14, 2007, Finland. International archives of photogrammetry, remote sensing and spatial information sciences, vol XXXVI, Part 3/W52, pp 150–155

  • Haara A, Korhonen KT (2004) Kuvioittaisen arvioinnin luotettavuus. Metsätieteen aikakauskirja 4/2004:489–508 (in Finnish)

  • Haara A, Maltamo M, Tokola T (1997) The k-nearest-neighbour method for estimating basal-area diameter distribution. Scand J For Res 12:200–208

    Article  Google Scholar 

  • Haralick RM, Shanmugam K, Dinsteein J (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3:610–621. doi:10.1109/TSMC.1973.4309314

    Article  Google Scholar 

  • Hollaus M, Wagner W, Eberhöfer C, Karel W (2006) Accuracy of large-scale canopy heights derived from LiDAR data under operational constraints in a complex alpine environment. ISPRS J Photogramm Remote Sens 60:323–338. doi:10.1016/j.isprsjprs.2006.05.002

    Article  Google Scholar 

  • Hollaus M, Wagner W, Maier B, Schadauer K (2007) Airborne laser scanning of forest stem volume in a mountainous environment. Sensors 7:1559–1577. doi:10.3390/s7081559

    Article  Google Scholar 

  • Holmgren J (2004) Prediction of tree height, basal area and stem volume using airborne laser scanning. Scand J For Res 19:543–553. doi:10.1080/02827580410019472

    Article  Google Scholar 

  • Holmström H, Nilsson M, Ståhl G (2001) Simultaneous estimations of forest parameters using aerial photograph interpreted data and the k nearest neighbour method. Scand J For Res 16:67–78. doi:10.1080/028275801300004424

    Article  Google Scholar 

  • Hyvönen P, Pekkarinen A, Tuominen S (2005) Segment-level stand inventory for forest management. Scand J For Res 20:75–84. doi:10.1080/02827580510008220

    Article  Google Scholar 

  • Jensen JLR, Humes KS, Conner T, Williams CJ, DeGroot J (2006) Estimation of biophysical characteristics for highly variable mixed-conifer stands using small-footprint lidar. Can J For Res 36:1129–1138. doi:10.1139/X06-007

    Article  Google Scholar 

  • Kainulainen A (2007) Relaskooppikoealojen käyttökelpoisuus puustotunnusten laserkeilaustulkinnassa. Faculty of forest sciences, master’s thesis in management of forest ecosystems. University of Joensuu, 43p (in Finnish)

  • Kainulainen A, Hyvönen P (2006) VMILASER maastokoealojen mittausohje. Finnish Forest Research Institute, Joensuu, p 76 (in Finnish)

    Google Scholar 

  • Kangas A, Korhonen KT (1996) Application of non-parametric kernel regression and nearest neighbour regression for generalizing sample tree information. In: Spatial accuracy assessment in natural resources and environmental sciences: second international symposium. 21–23 May 1996, Fort Collins, CO, pp 631–638

  • Kilkki P, Päivinen R (1987) Reference sample plots to combine field measurements and satellite data in forest inventory. In: Remote sensing-aided forest inventory. Proceedings of seminars organised by SNS, 10–12 Dec 1986, Hyytiälä, Finland. Research Notes No. 19. Department of Forest Mensuration and Management, University of Helsinki, Helsinki, pp 209–215

  • Kilpeläinen H, Tokola T (1999) Gain to be achieved from stand delineation in LANDSAT TM image-based estimates of stand volume. For Ecol Manage 124:105–111. doi:10.1016/S0378-1127(99)00059-6

    Article  Google Scholar 

  • Laasasenaho J (1982) Taper curve and volume function for pine, spruce and birch. Commun Inst Forestalis Fenn 108:1–74

    Google Scholar 

  • Laasasenaho J, Päivinen R (1986) Kuvioittaisen arvioinnin tarkistamisesta. Folia Forestalia 664:1–19 (in Finnish)

    Google Scholar 

  • Leberl F, Gruber M, Ponticelli M, Bernoegger S, Perko R (2003) The ultracam large format aerial digital camera system. In: Proceedings of ASPRS 2003 conference, Anchorage, USA, on CD-ROM

  • Maltamo M, Eerikäinen K, Packalén P, Hyyppä J (2006a) Estimation of stem volume using laser scanning based canopy height metrics. Forestry 79:217–229. doi:10.1093/forestry/cpl007

    Article  Google Scholar 

  • Maltamo M, Malinen J, Packalén P, Suvanto A, Kangas J (2006b) Non-parametric estimation of stem volume using laser scanning, aerial photography and stand register data. Can J For Res 36:426–436. doi:10.1139/x05-246

    Article  Google Scholar 

  • Maltamo M, Korhonen KT, Packalén P, Mehtätalo L, Suvanto A (2007) A test on the usability of truncated angle count sample plots as ground truth in airborne laser scanning based forest inventory. Forestry 80:73–81. doi:10.1093/forestry/cpl045

    Article  Google Scholar 

  • McRoberts RE (2008) Using satellite imagery and the k-nearest neighbors technique as a bridge between strategic and management forest inventories. Remote Sens Environ 112:2212–2221. doi:10.1016/j.rse.2007.07.025

    Article  Google Scholar 

  • Means JE, Acker SA, Brandon JF, Renslow M, Emerson L, Hendrix CJ (2000) Predicting forest stand characteristics with airborne scanning lidar. Photogramm Eng Remote Sensing 66:1367–1371

    Google Scholar 

  • Moeur M, Stage AR (1995) Most similar neighbor: an improved sampling inference procedure for natural resource planning. For Sci 41:337–359

    Google Scholar 

  • Muinonen E, Maltamo M, Hyppänen H, Vainikainen V (2001) Forest stand characteristics estimation using a most similar neighbor approach and image spatial structure. Remote Sens Environ 78:223–228. doi:10.1016/S0034-4257(01)00220-6

    Article  Google Scholar 

  • Naesset E (1997) Estimating timber volume of forest stands using airborne laser scanner data. Remote Sens Environ 61:246–253. doi:10.1016/S0034-4257(97)00041-2

    Article  Google Scholar 

  • Naesset E (2002) Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens Environ 80:88–99. doi:10.1016/S0034-4257(01)00290-5

    Article  Google Scholar 

  • Naesset E (2004a) Practical large-scale forest stand inventory using a small airborne scanning laser. Scand J For Res 19:164–179. doi:10.1080/02827580310019257

    Article  Google Scholar 

  • Naesset E (2004b) Accuracy of forest inventory using airborne laser scanning: evaluating the first Nordic full-scale operational project. Scand J For Res 19:554–557. doi:10.1080/02827580410019544

    Article  Google Scholar 

  • Naesset E, Gobakken T, Holmgren J, Hyyppä J, Hyyppä H, Maltamo M, Nilsson M, Olsson H, Persson Å, Söderman U (2004) Laser scanning of forest resources: the Scandinavian experience. Scand J For Res 19:482–499. doi:10.1080/02827580410019553

    Article  Google Scholar 

  • Naesset E, Gobakken T, Kangas A, Maltamo M, Bollandsås OM, Aasland T, Solberg S (2006) Extending and improving methods for operational stand-wise forest inventories utilizing multi-resolution airborne laser scanner data. In: Proceedings of the international conference Silvilaser 2006. November 7–10 2006. Ehime Prefectual Convention Hall Matsuyama, Japan, pp 75–79

  • Niska H, Rantamäki M, Hiltunen T, Karppinen A, Kukkonen J, Ruuskanen J, Kolehmainen M (2005) Evaluation of an integrated modelling system containing a multi-layer perceptron model and the numerical weather prediction model HIRLAM for the forecasting of urban airborne pollutant concentrations. Atmos Environ 39:6524–6536. doi:10.1016/j.atmosenv.2005.07.035

    Article  CAS  Google Scholar 

  • Packalén P, Maltamo M (2006) Predicting the volume by tree species using airborne laser scanning and aerial photographs. For Sci 52:611–622

    Google Scholar 

  • Packalén P, Maltamo M (2007) The k-MSN method in the prediction of species specific stand attributes using airborne laser scanning and aerial photographs. Remote Sens Environ 109:328–341. doi:10.1016/j.rse.2007.01.005

    Article  Google Scholar 

  • Sironen S, Kangas A, Maltamo M, Kangas J (2003) Estimating individual tree growth with non-parametric methods. Can J For Res 33:444–449. doi:10.1139/x02-162

    Article  Google Scholar 

  • Thomas V, Treitz P, McCaughey JH, Morrison I (2006) Mapping stand-level forest biophysical variables for a mixedwood boreal forest using lidar: an examination of scanning density. Can J For Res 36:34–47. doi:10.1139/x05-230

    Article  Google Scholar 

  • Tomppo E (2006a) The Finnish National Forest Inventory. In: Kangas A, Maltamo M (eds) Forest inventory. Methodology and applications. Managing forest ecosystems, vol 10. Springer, Dordrecht, pp 179–194

    Google Scholar 

  • Tomppo E (2006b) The Finnish multi-source National Forest Inventory—small area estimation and map production. In: Kangas A, Maltamo M (eds) Forest inventory. Methodology and applications. Managing forest ecosystems, vol 10. Springer, Dordrecht, pp 195–224

    Google Scholar 

  • Tomppo E, Halme M (2004) Using coarse scale forest variables as ancillary information and weighting of variables in k-NN estimation: a genetic algorithm approach. Remote Sens Environ 92:1–20. doi:10.1016/j.rse.2004.04.003

    Article  Google Scholar 

  • Tuominen S, Pekkarinen A (2004) Local radiometric correction of digital aerial photographs for multi source forest inventory. Remote Sens Environ 89:72–82. doi:10.1016/j.rse.2003.10.005

    Article  Google Scholar 

  • Uuttera J, Hiltunen J, Rissanen P, Anttila P, Hyvönen P (2002) Uudet kuvioittaisen arvioinnin menetelmät—arvio soveltuvuudesta yksityismaiden metsäsuunnitteluun. Metsätieteen aikakauskirja 3(3002):523–531

    Google Scholar 

  • van Aardt JAN, Wynne RH, Oberwald RG (2006) Forest volume and biomass estimation using small-footprint lidar-distributional parameters on a per-segment basis. For Sci 52:636–649

    Google Scholar 

  • Veltheim T (1987) Pituusmallit männylle, kuuselle ja koivulle. Metsänarvioimistieteen pro gradu -tutkielma. Helsingin yliopisto. 59p (in Finnish)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Maltamo.

Additional information

Communicated by K. Puettmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maltamo, M., Packalén, P., Suvanto, A. et al. Combining ALS and NFI training data for forest management planning: a case study in Kuortane, Western Finland. Eur J Forest Res 128, 305–317 (2009). https://doi.org/10.1007/s10342-009-0266-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-009-0266-6

Keywords

Navigation