Skip to main content
Log in

Comparative analysis of thermal performance models describing the effect of temperature on the preimaginal development of Drosophila suzukii

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Drosophila suzukii is a major concern worldwide since its first detection in the Western world in 2008 because it is able to attack healthy ripening fruits producing high economic losses. The knowledge of its biological traits is fundamental to establish sustainable pest management strategies. One of the main factors determining population dynamics of arthropods is temperature. Therefore, modelling the response of the development of pests to this factor contributes to anticipate risk situations and to establish possible new areas of colonization. A mortality model and thirty-two developmental models were used to describe the relationship between the immature survival and developmental rate of D. suzukii versus temperature. The survival and developmental times of the immature stages were determined across a broad range of temperatures (10–31 °C). Then, the models were fitted and the predictions of the developmental models compared with the developmental times obtained under three regimes of fluctuating temperatures (4–16, 13–25 and 21–32 °C). Developmental models were applied to the complete range of temperatures studied at each regime, or they were truncated for the lower and upper regimes at the temperatures that produced 100% immature mortality estimated with the mortality model (8.7–30.9 °C). Better predictions were obtained with the non-truncated models, indicating that some development occurred under short exposures to temperatures beyond those producing 100% mortality during immature development. The Régnière, Lactin II, Hansen, Lobry–Rosso–Flandrois and Logan III models produced the lowest deviations and provided the most realistic lower and higher development thresholds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Analytis S (1977) Über die Relation zwischen biologischer Entwicklung und Temperatur bei phytopathogenen Pilzen. Phytopathol Z 90:64–76

    Article  Google Scholar 

  • Analytis S (1981) Relationship between temperature and development times in phytopathogenic fungus and in plant pests: a mathematical model. Agric Res (Athens) 5:133–159

    Google Scholar 

  • Andreazza F, Bernardi D, dos Santos RSS, Garcia FRM, Oliveira EE, Botton M, Nava DE (2017) Drosophila suzukii in southern neotropical region: current status and future perspectives. Neotrop Entomol 46:591–605

    Article  CAS  PubMed  Google Scholar 

  • Andrewartha HG, Birch LC (1954) The distribution and abundance of animals. University of Chicago, Chicago

    Google Scholar 

  • Angilletta MJ Jr (2006) Estimating and comparing thermal performance curves. J Therm Biol 31:541–545

    Article  Google Scholar 

  • Asplen MK, Anfora G, Biondi A, Choi DS, Chu D, Daane KM, Gibert P, Gutierrez AP, Hoelmer KA, Hutchison WD, Isaacs R, Jiang ZL, Karpati Z, Kimura MT, Pascual M, Philips CR, Plantamp C, Ponti L, Vetek G, Vogt H, Walton VM, Yu Y, Zappala L, Desneux N (2015) Invasion biology of spotted wing Drosophila (Drosophila suzukii): a global perspective and future priorities. J Pest Sci 88:469–494

    Article  Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Change Biol 8:1–16

    Article  Google Scholar 

  • Barzegar S, Zamani AA, Abbasi S, Shooshtari RV, Farsani NS (2016) Temperature-dependent development modeling of the phorid fly Megaselia halterata (wood) (Diptera: Phoridae). Neotrop Entomol 45:507–517

    Article  CAS  PubMed  Google Scholar 

  • Beck SD (1983) Insect thermoperiodism. Annu Rev Entomol 28:91–108

    Article  Google Scholar 

  • Bellamy DE, Sisterson MS, Walse SS (2013) Quantifying host potentials: indexing postharvest fresh fruits for spotted wing drosophila, Drosophila suzukii. PLoS ONE 8:e61227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolda M, Goodhue R, Zalom FG (2010) Spotted wing drosophila: potential economic impact of a newly established pest. Agric Resour Econ Update 13:5–8

    Google Scholar 

  • Briere J-F, Pracros P, Le Roux A-Y, Pierre J-S (1999) A novel rate model of temperature-dependent development for arthropods. Environ Entomol 28:22–29

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference. A practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Calabria G, Maca J, Bachli G, Serra L, Pascual M (2012) First records of the potential pest species Drosophila suzukii (Diptera: Drosophilidae) in Europe. J Appl Entomol 136:139–147

    Article  Google Scholar 

  • Campbell A, Frazer BD, Gilbert N, Gutiérrez N, MacKauer M (1974) Temperature requirements of some aphids and their parasites. J Appl Ecol 11:431–438

    Article  Google Scholar 

  • Cini A, Ioriatti C, Anfora G (2012) A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bull Insectol 65:149–160

    Google Scholar 

  • Cini A, Anfora G, Escudero-Colomar LA, Grassi A, Santosuosso U, Seljak G, Papini A (2014) Tracking the invasion of the alien fruit pest Drosophila suzukii in Europe. J Pest Sci 87:559–566

    Article  Google Scholar 

  • Colinet H, Sinclair BJ, Vernon P, Renault D (2015) Insects in fluctuating thermal environments. Annu Rev Entomol 60:123–140

    Article  CAS  Google Scholar 

  • Coop L (2010) Online phenology and degree-day model for agricultural and decision-making in the US. Integrated Plant Protection Center, Botany and Plant Pathology Department, Oregon State University, Corvallis. http://uspest.org/risk/models?spp_swd. Accessed 4 Apr 2018

  • Damos PT, Savopoulou-Soultani M (2008) Temperature-dependent bionomics and modeling of Anarsia lineatella (Lepidoptera: Gelechiidae) in the laboratory. J Econ Entomol 101:1557–1567

    Article  CAS  PubMed  Google Scholar 

  • Damos P, Savopoulou-Soultani M (2012) Temperature-driven models for insect development and vital thermal requirements. Psyche 2012:1–13

    Article  Google Scholar 

  • Damus M (2009) Some preliminary results from Climex and Maxent distribution modeling of Drosophila suzukii. Version 2: CFIA Plant Health Risk Assessment, Ottawa, Canada. http://horticulture.oregonstate.edu/system/files/u1318/DrosophilaSuzukiiInfestationModel.pdf. Accessed 4 Apr 2018

  • Davis JA, Radcliffe EB, Ragsdale DW (2006) Effects of high and fluctuating temperatures on Myzus persicae (Hemiptera: Aphididae). Environ Entomol 35:1461–1468

    Article  Google Scholar 

  • de Jong G, van der Have TM (2009) Temperature dependence of development rate, growth rate and size: from biophysics to adaptation. In: Whitman DW, Ananthakrishnan TN (eds) Phenotypic plasticity of insects. Mechanisms and consequences. Science Publishers, Enfield, pp 523–588

    Google Scholar 

  • Deprá M, Poppe JL, Schmitz HJ, De Toni DC, Valente VLS (2014) The first records of the invasive pest Drosophila suzukii in the South American continent. J Pest Sci 87:379–383

    Article  Google Scholar 

  • Emiljanowicz LM, Ryan GD, Langille A, Newman J (2014) Development, reproductive output and population growth of the fruit fly pest Drosophila suzukii (Diptera: Drosophilidae) on artificial diet. J Econ Entomol 107:1392–1398

    Article  PubMed  Google Scholar 

  • Gadino AN, Walton VM (2012) Temperature-related development and population parameters for Typhlodromus pyri (Acari: Phytoseiidae) found in Oregon vineyards. Exp Appl Acarol 58:1–10

    Article  PubMed  Google Scholar 

  • Ganjisaffar F, Fathipour Y, Kamali K (2011) Temperature-dependent development and life table parameters of Typhlodromus bagdasarjani (Phytoseiidae) fed on two-spotted spider mite. Exp Appl Acarol 55:259–272

    Article  PubMed  Google Scholar 

  • García-Martínez FO, Pérez-Sayas C, Falcó JV, Tormos J, Beitia F (2014) La drosófila de alas manchadas Drosophila suzukii: cría en laboratorio y ensayos preliminares con parasitoides. Agríc Vergel 372:65–69

    Google Scholar 

  • García-Ruiz E, Marco V, Pérez-Moreno I (2011) Effects of variable and constant temperatures on the embryonic development and survival of a new grape pest, Xylotrechus arvicola (Coleoptera: Cerambycidae). Environ Entomol 40:939–947

    Article  PubMed  Google Scholar 

  • Hamby KA, Bellamy DE, Chiu JC, Lee JC, Walton VM, Wiman NG, York RM, Biondi A (2016) Biotic and abiotic factors impacting development, behavior, phenology, and reproductive biology of Drosophila suzukii. J Pest Sci 89:605–619

    Article  Google Scholar 

  • Hansen EM, Bentz BJ, Powell JA, Gray DR, Vandygriff JC (2011) Prepupal diapause and instar IV developmental rates of the spruce beetle, Dendroctonus rufipennis (Coleoptera: Curculionidae, Scolytinae). J Insect Physiol 57:1347–1357

    Article  CAS  PubMed  Google Scholar 

  • Harcourt DG, Yee JM (1982) Polynomial algorithm for predicting the duration of insect life stages. Environ Entomol 11:581–584

    Article  Google Scholar 

  • Hardin JA, Kraus DA, Burrack HJ (2015) Diet quality mitigates intraspecific larval competition in Drosophila suzukii. Entomol Exp Appl 156:59–65

    Article  CAS  Google Scholar 

  • Hilbert DW, Logan JA (1983) Empirical model of nymphal development for the migratory grasshopper, Melanoplus sanguinipes (Orthoptera: Acrididae). Environ Entomol 12:1–5

    Article  Google Scholar 

  • Hudes ES, Shoemaker CA (1988) Inferential method for modeling insect phenology and its application to the spruce budworm (Lepidoptera: Tortricidae). Environ Entomol 17:97–108

    Article  Google Scholar 

  • Huey RB, Stevenson RD (1979) Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Am Zool 19:357–366

    Article  Google Scholar 

  • Huey RB, Partridge L, Fowler K (1991) Thermal sensitivity of Drosophila melanogaster responds rapidly to laboratory natural selection. Evolution 45:751–756

    Article  PubMed  Google Scholar 

  • Hurvich CM, Tsai CL (1989) Regression and time series model selection in small samples. Biometrika 76:297–307

    Article  Google Scholar 

  • Ikemoto T (2005) Intrinsic optimum temperature for development of insects and mites. Environ Entomol 34:1377–1387

    Article  Google Scholar 

  • Janisch E (1932) The influence of temperature on the life history of insects. Trans Entomol Soc Lond 80:137–168

    Article  Google Scholar 

  • Jaramillo SL, Mehlferber E, Moore PJ (2015) Life-history trade-offs under different larval diets in Drosophila suzukii (Diptera: Drosophilidae). Physiol Entomol 40:2–9

    Article  Google Scholar 

  • Jeffs CT, Leather SR (2014) Effects of extreme, fluctuating temperature events on life history traits of the grain aphid, Sitobion avenae. Entomol Exp Appl 150:240–249

    Article  Google Scholar 

  • Kenis M, Tonina L, Eschen R, van der Sluis B, Sancassani M, Mori N, Haye T, Helsen H (2016) Non-crop plants used as hosts by Drosophila suzukii in Europe. J Pest Sci 89:735–748

    Article  Google Scholar 

  • Kinjo H, Kunimi Y, Nakai M (2014) Effects of temperature on the reproduction and development of Drosophila suzukii (Diptera: Drosophilidae). Appl Entomol Zool 49:297–304

    Article  Google Scholar 

  • Kontodimas DC, Eliopoulus PA, Stathas GJ, Economou LP (2004) Comparative temperature-dependent development of Nephus includens (Kirsch) and Nephus bisignatus (Boheman) (Coleoptera: Coccinellidae) preying on Planococcus citri (Risso) (Homoptera: Pseudococcidelidae): evaluation of a linear and various nonlinear models using specific criteria. Environ Entomol 33:1–11

    Article  Google Scholar 

  • Kvalseth TO (1985) Cautionary note about R2. Am Stat 39:279–285

    Google Scholar 

  • Lactin DJ, Holliday NJ, Johnson DL, Craigen R (1995) Improved rate model of temperature-dependent development by arthropods. Environ Entomol 24:68–75

    Article  Google Scholar 

  • Lamb RJ, Gerber GH, Atkinson GF (1984) Comparison of developmental rate curves applied to egg hatching data of Entomoscelis americana Brown (Coleoptera: Chrysomelidae). Environ Entomol 13:868–872

    Article  Google Scholar 

  • Lee JC, Bruck DJ, Curry H, Edwards D, Haviland DR, Van Steenwyk RA, Yorgey BM (2011) The susceptibility of small fruits and cherries to the spotted-wing drosophila, Drosophila suzukii. Pest Manag Sci 67:1358–1367

    Article  CAS  PubMed  Google Scholar 

  • Lee JC, Dreves AJ, Cave AM, Kawai S, Isaacs R, Miller JC, Van Timmeren S, Bruck DJ (2015) Infestation of wild and ornamental noncrop fruits by Drosophila suzukii (Diptera: Drosophilidae). Ann Entomol Soc Am 108:117–129

    Article  Google Scholar 

  • Liu SS, Meng XD (2000) Modelling development time of Lipaphis erysimi (Hemiptera: Aphididae) at constant and variable temperatures. Bull Entomol Res 90:337–347

    Article  CAS  PubMed  Google Scholar 

  • Liu S-S, Zhang G-M, Zhu J (1995) Influence of temperature variations on rate of development in insects: analysis of case studies from entomological literature. Ann Entomol Soc Am 88:107–119

    Article  Google Scholar 

  • Logan JA (1988) Toward an expert system for development of pest simulation models. Environ Entomol 17:359–376

    Article  Google Scholar 

  • Logan DP, Barrington AM (2015) Effect of temperature on development and survival of burnt pine longhorn Arhopalus ferus (Mulsant) (Coleoptera: Cerambycidae) eggs. N Z Entomol 39:33–39

    Article  Google Scholar 

  • Logan JA, Wolkind DJ, Hoyt SC, Tanigoshi LK (1976) An analytic model for description of temperature dependent rate phenomena in Arthropods. Environ Entomol 5:1133–1140

    Article  Google Scholar 

  • Maharjan R, Jung C (2016) Thermal requirements and development of the Korean population of the potato leafminer, Liriomyza huidobrensis (Diptera: Agromyzidae). J Asia Pac Entomol 19:595–601

    Article  Google Scholar 

  • Martínez-García H, Sáenz-Romo MG, Aragón-Sánchez M, Román-Fernández LR, Sáenz-de-Cabezón E, Marco-Mancebón VS, Pérez-Moreno I (2017) Temperature-dependent development of Macrolophus pygmaeus and its applicability to biological control. Biocontrol 62:481–493

    Article  CAS  Google Scholar 

  • Moallem Z, Karimi-Malati A, Sahragard A, Zibaee A (2017) Modeling temperature-dependent development of Glyphodes pyloalis (Lepidoptera: Pyralidae). J Insect Sci 17:1–8

    Article  Google Scholar 

  • Moore JL, Remais JV (2014) Developmental models for estimating ecological responses to environmental variability: structural, parametric, and experimental issues. Acta Biotheor 62:69–90

    Article  PubMed  PubMed Central  Google Scholar 

  • Morales-Ramos JA, Cate JR (1993) Temperature-dependent developmental rates of Catolaccus grandis (Hymenoptera, Pteromalidae). Environ Entomol 22:226–233

    Article  Google Scholar 

  • Okuyama T (2014) On the estimation of temperature-dependent development rate. Appl Entomol Zool 49:499–503

    Article  Google Scholar 

  • Poyet M, Le Roux V, Gibert P, Meirland A, Prevost G, Eslin P, Chabrerie O (2015) The wide potential trophic niche of the asiatic fruit fly Drosophila suzukii: the key of its invasion success in temperate Europe? PLoS ONE 10(11):e0142785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raspi A, Canale A, Canovai R, Conti B, Loni A, Strumia F (2011) Insetti delle aree protette del comune di San Giuliano Terme. Felici Editore. San Giuliano Terme, Pisa

    Google Scholar 

  • Ratkowsky DA, Reddy GVP (2017) Empirical model with excellent statistical properties for describing temperature-dependent developmental rates of insects and mites. Ann Entomol Soc Am 110:302–309

    Article  Google Scholar 

  • Ratkowsky DA, Lowry RK, McMeekin TA, Stokes AN, Chandler RE (1983) Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J Bacteriol 154:1222–1226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ratkowsky DA, Olley J, Ross T (2005) Unifying temperature effects on the growth rate of bacteria and the stability of globular proteins. J Theor Biol 233:351–362

    Article  CAS  PubMed  Google Scholar 

  • Ratte HT (1985) Temperature and insect development. In: Hoffman KH (ed) Environmental physiology and biochemistry of insects. Springer, New York, pp 33–66

    Google Scholar 

  • Régnière J, Powell JA (2013) Animal life cycle models (Poikilotherms). In: Schwarz MD (ed) Phenology: an integrative environmental science. Springer, Berlin, pp 295–315

    Chapter  Google Scholar 

  • Régnière J, Powell J, Bentz B, Nealis V (2012) Effects of temperature on development, survival and reproduction of insects: experimental design, data analysis and modeling. J Insect Physiol 58:634–647

    Article  CAS  Google Scholar 

  • Rosso L, Lobry JR, Flandrois JP (1993) An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model. J Theor Biol 162:447–463

    Article  CAS  PubMed  Google Scholar 

  • Ryan GD, Emiljanowicz L, Wilkinson F, Kornya M, Newman JA (2016) Thermal tolerances of the spotted-wing drosophila Drosophila suzukii (Diptera: Drosophilidae). J Econ Entomol 109:746–752

    Article  PubMed  Google Scholar 

  • Sánchez-Ramos I, Castañera P (2001) Development and survival of Tyrophagus putrescentiae (Acari: Acaridae) at constant temperatures. Environ Entomol 30:1082–1089

    Article  Google Scholar 

  • Sánchez-Ramos I, Álvarez-Alfageme F, Castañera P (2007) Development and survival of the cheese mites, Acarus farris and Tyrophagus neiswanderi (Acari: Acaridae), at constant temperatures and 90% relative humidity. J Stored Prod Res 43:64–72

    Article  Google Scholar 

  • Sánchez-Ramos I, Pascual S, Fernández CE, Marcotegui A, González-Núñez M (2015) Effect of temperature on the survival and development of the immature stages of Monosteira unicostata (Hemiptera: Tingidae). Eur J Entomol 112:664–675

    Article  Google Scholar 

  • Schoolfield RM, Sharpe PJH, Magnuson CE (1981) Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J Theor Biol 88:719–731

    Article  CAS  Google Scholar 

  • Schwarz G (1978) Estimating dimension of a model. Ann Stat 6:461–464

    Article  Google Scholar 

  • Sharpe PJ, DeMichele DW (1977) Reaction kinetics of poikilotherm development. J Theor Biol 64:649–670

    Article  CAS  PubMed  Google Scholar 

  • Shi P, Ge F (2010) A comparison of different thermal performance functions describing temperature-dependent development rates. J Therm Biol 35:225–231

    Article  Google Scholar 

  • Shi P, Ge F, Sun Y, Chen C (2011) A simple model for describing the effect of temperature on insect developmental rate. J Asia Pac Entomol 14:15–20

    Article  Google Scholar 

  • Shi PJ, Reddy GVP, Chen L, Ge F (2016) Comparison of thermal performance equations in describing temperature-dependent developmental rates of insects: (I) empirical models. Ann Entomol Soc Am 109:211–215

    Article  Google Scholar 

  • Shi PJ, Reddy GVP, Chen L, Ge F (2017) Comparison of thermal performance equations in describing temperature-dependent developmental rates of insects: (II) two thermodynamic models. Ann Entomol Soc Am 110:113–120

    Article  Google Scholar 

  • StatPoint Technologies (2009) Statgraphics® Centurion XVI user manual. Statpoint Technologies, Warrenton

  • Stinner RE, Gutiérrez AP, Butler GD Jr (1974) An algorithm for temperature-dependent growth rate simulation. Can Entomol 106:519–524

    Article  Google Scholar 

  • SYSTAT (2002) TableCurve 2D 5.01 for Windows user’s manual. SYSTAT Software Inc, Richmond

    Google Scholar 

  • Taylor F (1981) Ecology and evolution of physiological time in insects. Am Nat 117:1–23

    Article  Google Scholar 

  • Tochen S, Dalton DT, Wiman N, Hamm C, Shearer PW, Walton VM (2014) Temperature-related development and population parameters for Drosophila suzukii (Diptera: Drosophilidae) on cherry and blueberry. Environ Entomol 43:501–510

    Article  PubMed  Google Scholar 

  • Tochen S, Woltz JM, Dalton DT, Lee JC, Wiman NG, Walton VM (2016) Humidity affects populations of Drosophila suzukii (Diptera: Drosophilidae) in blueberry. J Appl Entomol 140:47–57

    Article  Google Scholar 

  • Trudgill DL, Honek A, Li D, Van Straalen NM (2005) Thermal time—concepts and utility. Ann Appl Biol 146:1–14

    Article  Google Scholar 

  • Uvarov BP (1931) Insects and climate. Trans Entomol Soc Lond 79:1–247

    Article  Google Scholar 

  • Walsh DB, Bolda MP, Goodhue RE, Dreves AJ, Lee J, Bruck DJ, Walton VM, O’Neal SD, Zalom FG (2011) Drosophila suzukii (Diptera: Drosophilidae): invasive pest of ripening soft fruit expanding its geographic range and damage potential. J Integr Pest Manag 2:1–7

    Article  Google Scholar 

  • Wang EL, Engel T (1998) Simulation of phenological development of wheat crops. Agric Syst 58:1–24

    Article  Google Scholar 

  • Wang R-S, Lan Z-X, Ding Y-Q (1982) Studies on mathematical models of the relationship between insect development and temperature. Acta Ecol Sin 2:47–57 (in Chinese: English abstract)

    CAS  Google Scholar 

  • Wang LF, Shi PJ, Chen C, Xue FS (2013) Effect of temperature on the development of Laodelphax striatellus (Homoptera: Delphacidae). J Econ Entomol 106:107–114

    Article  PubMed  Google Scholar 

  • Warren JA, Anderson GS (2013) Effect of fluctuating temperatures on the development of a forensically important blow fly, Protophormia terraenovae (Diptera: Calliphoridae). Environ Entomol 42:167–172

    Article  PubMed  Google Scholar 

  • Wiman NG, Dalton DT, Anfora G, Biondi A, Chiu JC, Daane KM, Gerdeman B, Gottardello A, Hamby KA, Isaacs R, Grassi A, Ioriatti C, Lee JC, Miller B, Stacconi MVR, Shearer PW, Tanigoshi L, Wang XG, Walton VM (2016) Drosophila suzukii population response to environment and management strategies. J Pest Sci 89:653–665

    Article  Google Scholar 

  • Worner SP (1992) Performance of phenological models under variable temperature regimes: consequences of the Kaufman or rate summation effect. Environ Entomol 21:689–699

    Article  Google Scholar 

  • Yin XY, Kropff MJ, McLaren G, Visperas RM (1995) A nonlinear model for crop development as a function of temperature. Agric For Meteorol 77:1–16

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministerio de Economía y Competitividad of Spain by the Project 266505 FP7-ERANET EUPHRESCO II. Thanks are due to Dr. Jordi Riudavets (IRTA, Institute of Agrifood Research and Technology, Spain) for providing the D. suzukii population.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismael Sánchez-Ramos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by A. Biondi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Ramos, I., Fernández, C.E. & González-Núñez, M. Comparative analysis of thermal performance models describing the effect of temperature on the preimaginal development of Drosophila suzukii. J Pest Sci 92, 523–541 (2019). https://doi.org/10.1007/s10340-018-1030-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-018-1030-9

Keywords

Navigation