Skip to main content
Log in

Optimization of Electrospray Ionization for Liquid Chromatography Time-of-Flight Mass Spectrometry Analysis of Preservatives in Wood Leachate Matrix

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Triazoles and 3-iodo-2-propynyl butylcarbamate (IPBC) are commonly used wood preservatives active against a wide range of fungi and bacteria. As they are prone to leaching, their amounts need to be monitored by the industry to determine preservative loss from the products and for environmental impact assessment. Therefore, a liquid chromatography–electrospray–time-of-flight mass spectrometry (LC–ESI–TOFMS) method was developed and optimized for simultaneous quantification of triazoles and IPBC in aqueous wood extracts, specifically wood leachate. Analyte pre-concentration on a solid-phase extraction cartridge prior to the analysis yielded > 94% recoveries. ESI method parameters (e.g., solvent system, electrolyte type, electrolyte concentration, capillary and fragmentor voltages) were selected based on an initial screening followed by an in-depth optimization via design of experiments. The optimal conditions employed an acetonitrile-water solvent system with 1.7 mM ammonium acetate, capillary voltage of 4350 V, and fragmentor voltage of 115 V. The developed method was applied to industrial wood leachate samples and the matrix-affected limits of detection were found to be 1.2–1.5 µg L−1 with interlay repeatability being < 7%.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Christen V, Crettaz P, Fent K (2014) Toxicol Appl Pharmacol 279:455–466. https://doi.org/10.1016/j.taap.2014.06.025

    Article  CAS  PubMed  Google Scholar 

  2. Buschhaus HU, Valcke AR (1995) Triazoles: synergism between propiconazole and tebuconazole. In: 26th Annual meeting Helsingør Denmark

  3. Wüstenhöfer B, Wegen HW, Metzner W (1990) International Research Group on Wood Protection. DOI Doc. No. IRG/WP/3629

  4. Barnes HM (2001) Wood: preservative treated. Encyclopedia of materials: science and technology. Elsevier, Oxford, pp 9683–9688

    Book  Google Scholar 

  5. Schiopu N, Tiruta-Barna L (2012) Wood preservatives. Toxicity of building materials. Woodhead Publishing, Cambridge, pp 138–165

    Book  Google Scholar 

  6. Morrell JJ (2012) Protection of wood-based materials. Handbook of environmental degradation of materials. William Andrew Publishing, Oxford, pp 407–439

    Book  Google Scholar 

  7. Association AW-Ps (2006) Standard method for determination of propiconazole and tebuconazole in wood. In: Waterborne formulations and in treating solutions by HPLC, p 2

  8. Kamal N, Galvez R, Buelna G (2014) Water Qual Res J Can 49:210–222. https://doi.org/10.2166/wqrjc.2014.002

    Article  CAS  Google Scholar 

  9. Kalogridi E-C, Christophoridis C, Bizani E, Drimaropoulou G, Fytianos K (2014) Environ Sci Pollut Res 21:7239–7251. https://doi.org/10.1007/s11356-014-2793-z

    Article  CAS  Google Scholar 

  10. Faria AM, Maldaner L, Santana CC, Jardim ICSF, Collins CH (2007) Anal Chim Acta 582:34–40. https://doi.org/10.1016/j.aca.2006.08.046

    Article  CAS  PubMed  Google Scholar 

  11. Demoliner A, Caldas SS, Costa FP, Gonçalves FF, Clementin RM, Milani MR, Primel EG (2010) J Braz Chem Soc 21:1424–1433

    Article  CAS  Google Scholar 

  12. Zhou Q, Xiao J, Ding Y (2007) Anal Chim Acta 602:223–228. https://doi.org/10.1016/j.aca.2007.09.038

    Article  CAS  PubMed  Google Scholar 

  13. Farajzadeh M, Khoshmaram L, Afshar mogaddam M (2012) J Sep Sci 35:121–127. https://doi.org/10.1002/jssc.201100374

    Article  CAS  PubMed  Google Scholar 

  14. Tuzimski T, Rejczak T, PieniĄŻEk D, Buszewicz G, TeresiŃSki G (2016) J AOAC Int 99:1436–1443. https://doi.org/10.5740/jaoacint.16-0277

    Article  CAS  PubMed  Google Scholar 

  15. Liu X, Guan W, Hao X, Wu X, Ma Y, Pan C (2014) Chromatographia 77:31–37. https://doi.org/10.1007/s10337-013-2583-7

    Article  CAS  Google Scholar 

  16. Kerkdijk H, Mol HGJ, van der Nagel B (2007) Anal Chem 79:7975–7983. https://doi.org/10.1021/ac0701536

    Article  CAS  PubMed  Google Scholar 

  17. Deng Z, Hu J, Qin D, Li H (2010) Chromatographia 71:679–684. https://doi.org/10.1365/s10337-010-1505-1

    Article  CAS  Google Scholar 

  18. Juan-García A, Picó Y, Font G (2005) J Chromatogr A 1073:229–236. https://doi.org/10.1016/j.chroma.2004.09.028

    Article  CAS  PubMed  Google Scholar 

  19. Zhao F, She Y, Zhang C, Cao X, Wang S, Zheng L, Jin M, Shao H, Jin F, Wang J (2017) J Chromatogr B 1064:143–150. https://doi.org/10.1016/j.jchromb.2017.08.022

    Article  CAS  Google Scholar 

  20. Morris BD, Schriner RB (2015) J Agric Food Chem 63:5107–5119. https://doi.org/10.1021/jf505539e

    Article  CAS  PubMed  Google Scholar 

  21. Mai-ling H, Ming J, Peng W, Su-rong M, Yan-fei L, Xiao-zhong H, Yun S, Bin L, Kang D (2007) Anal Bioanal Chem 387:1007–1016. https://doi.org/10.1007/s00216-006-1004-2

    Article  CAS  Google Scholar 

  22. Schermerhorn PG, Golden PE, Krynitsky AJ, Leimkuehler WM (2005) J AOAC Int 88:1491–1502

    CAS  PubMed  Google Scholar 

  23. Miyauchi T, Mori M, Ito K (2005) J Chromatogr A 1063:137–141. https://doi.org/10.1016/j.chroma.2004.11.086

    Article  CAS  PubMed  Google Scholar 

  24. Stavova J, Sedgeman CA, Smith ZT, Frink LA, Hart JA, Niri VH, Kubatova A (2011) Anal Chim Acta 702:205–212. https://doi.org/10.1016/j.aca.2011.06.058

    Article  CAS  PubMed  Google Scholar 

  25. Hansen M, Poulsen R, Luong X, Sedlak DL, Hayes T (2014) Anal Bioanal Chem 406:7677–7685. https://doi.org/10.1007/s00216-014-8207-8

    Article  CAS  PubMed  Google Scholar 

  26. Wick A, Fink G, Ternes TA (2010) J Chromatogr A 1217:2088–2103. https://doi.org/10.1016/j.chroma.2010.01.079

    Article  CAS  PubMed  Google Scholar 

  27. Perazzolo C, Morasch B, Kohn T, Magnet A, Thonney D, Chèvre N (2010) Environ Toxicol Chem 29:1649–1657. https://doi.org/10.1002/etc.221

    Article  PubMed  Google Scholar 

  28. Li Y, Dong F, Liu X, Xu J, Li J, Kong Z, Chen X, Zheng Y (2012) J Sep Sci 35:206–215. https://doi.org/10.1002/jssc.201100674

    Article  CAS  PubMed  Google Scholar 

  29. Sennert S, Volmer D, Levsen K, Wünsch G (1995) Fresenius J Anal Chem 351:642–649. https://doi.org/10.1007/bf00323341

    Article  CAS  Google Scholar 

  30. Shoemaker JA (2016) J Chromatogr Sci 54:1532–1539. https://doi.org/10.1093/chromsci/bmw098

    Article  CAS  Google Scholar 

  31. Madureira FD, da Silva Oliveira FA, de Souza WR, Pontelo AP, de Oliveira MLG, Silva G (2012) Food Addit Contam Part A Chem Anal Control Expo Risk Assess 29:665–678. https://doi.org/10.1080/19440049.2011.623837

    Article  CAS  PubMed  Google Scholar 

  32. Van De Steene JC, Lambert WE (2008) J Chromatogr A 1182:153–160. https://doi.org/10.1016/j.chroma.2008.01.012

    Article  CAS  Google Scholar 

  33. Singer H, Jaus S, Hanke I, Lück A, Hollender J, Alder AC (2010) Environ Pollut 158:3054–3064. https://doi.org/10.1016/j.envpol.2010.06.013

    Article  CAS  PubMed  Google Scholar 

  34. Pastor-Belda M, Garrido I, Campillo N, Viñas P, Hellín P, Flores P, Fenoll J (2017) Food Chem 233:69–76. https://doi.org/10.1016/j.foodchem.2017.04.094

    Article  CAS  PubMed  Google Scholar 

  35. Charalampous AC, Miliadis GE, Koupparis MA (2015) Int J Environ Anal Chem 95:1283–1298. https://doi.org/10.1080/03067319.2015.1100723

    Article  CAS  Google Scholar 

  36. Ye C-l, Liu Q-l, Wang Z-k, Fan J (2012) Int J Environ Anal Chem 92:1176–1186. https://doi.org/10.1080/03067319.2010.523465

    Article  CAS  Google Scholar 

  37. Wang W, Ma X, Wu Q, Wang C, Zang X, Wang Z (2012) J Sep Sci 35:2266–2272. https://doi.org/10.1002/jssc.201200285

    Article  CAS  PubMed  Google Scholar 

  38. Gao Y, Zhou Q, Xie G, Yao Z (2012) J Sep Sci 35:3569–3574. https://doi.org/10.1002/jssc.201200553

    Article  CAS  PubMed  Google Scholar 

  39. Rousova J, Kusler K, Liyanage D, Leadbetter M, Dongari N, Zhang KK, Novikov A, Sauter ER, Kubátová A (2016) J Chromatogr B 1039:35–43. https://doi.org/10.1016/j.jchromb.2016.10.028

    Article  CAS  Google Scholar 

  40. Robles-Molina J, Lara-Ortega FJ, Gilbert-López B, García-Reyes JF, Molina-Díaz A (2014) J Chromatogr A 1350:30–43. https://doi.org/10.1016/j.chroma.2014.05.003

    Article  CAS  PubMed  Google Scholar 

  41. Amelin V, Andoralov A (2016) J Anal Chem 71:82–93. https://doi.org/10.1134/S1061934815120035

    Article  CAS  Google Scholar 

  42. Kukowski K, Martinská V, Sedgeman CA, Kuplic P, Kozliak EI, Fisher S, Kubátová A (2017) Chemosphere 184:261–268. https://doi.org/10.1016/j.chemosphere.2017.05.168

    Article  CAS  PubMed  Google Scholar 

  43. Dongari N, Sauter ER, Tande BM, Kubátová A (2014) J Chromatogr B 955–956:86–92. https://doi.org/10.1016/j.jchromb.2014.02.012

    Article  CAS  Google Scholar 

  44. Müller A, Flottmann D, Schulz W, Seitz W, Weber WH (2007) CLEAN Soil Air Water 35:329–338. https://doi.org/10.1002/clen.200700014

    Article  CAS  Google Scholar 

  45. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Talanta 76:965–977. https://doi.org/10.1016/j.talanta.2008.05.019

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Marvin Windows and Doors is acknowledged for financial support. The authors would like to thank Ben Wallace for stimulating discussions and the provided industrial wood leachate samples. The authors are also grateful to Evguenii I. Kozliak for manuscript editing.

Funding

Marvin Windows and Doors research Grant (no funding number available).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alena Kubátová.

Ethics declarations

Conflict of interest

We do not see direct conflict of interest as there is no beneficiary of the results reported. Nevertheless, this research was funded by Grant (no number available) from Marvin and Windows, Inc. to UND with PI Kubatova, co-author S. Fisher, Marvin Windows employee, Kukowski and Gysbers co-investigators.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 141 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klara, K., Brianna, G., Fisher, S. et al. Optimization of Electrospray Ionization for Liquid Chromatography Time-of-Flight Mass Spectrometry Analysis of Preservatives in Wood Leachate Matrix. Chromatographia 82, 1677–1685 (2019). https://doi.org/10.1007/s10337-019-03780-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-019-03780-3

Keywords

Navigation