Skip to main content
Log in

High-Resolution MS and MSn Investigation of UV Oxidation Products of Phenazone-type Pharmaceuticals and Metabolites

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The occurrence of phenazone-type analgesics, such as aminopyrine, metamizole, phenazone and propyphenazone, has been reported in the effluent of wastewater treatment plants in µg/L concentrations. The presence of the main metabolites of aminopyrine and metamizole—acetamido antipyrine and formyl aminoantipyrine—has even been detected in sub µg/L concentrations in surface water and water bodies used to produce drinking water. This points at their high persistence and the need for adequate removal strategies. The degradation of phenazone, propyphenazone, acetamido antipyrine and formyl aminoantipyrine by UV radiation was investigated under laboratory conditions. An elucidation approach based on high-resolution mass spectrometry resulted in the identification of 11 degradation products. A mechanism of ring opening via the oxidation of the N–N bond of the pyrazolone ring was observed as well as the more typical oxidation of carbon–carbon double bonds. Aside from the degradation products, the capacity of formyl aminoantipyrine to produce trimers and dimers was demonstrated. The dimers were shown to be persistent despite continuous UV radiation. The toxicity of the degradation products was assessed by quantitative structure–activity relationships. It was shown that when the carbon–carbon double bond is partially oxidized to an epoxy the toxicity towards fish and daphnid is increased with respect to the parent compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Godoy AA, Kummrow F, Paulo Augusto Z, Pamplin PAZ (2015) Chemosphere 138:281–291

    Article  CAS  PubMed  Google Scholar 

  2. Verlicchi P, Zambello E (2015) Sci Total Environ 538:750–767

    Article  CAS  PubMed  Google Scholar 

  3. Bu Q, Wang B, Huang J, Deng S, Yu G (2013) J Hazard Mater 262:189–211

    Article  CAS  PubMed  Google Scholar 

  4. Caracciolo AB, Topp E, Grenni P (2015) J Pharmaceut Biomed Anal 106:25–36

    Article  CAS  Google Scholar 

  5. Canonica S, Meunier L, Von Gunten U (2008) Water Res 42:121–128

    Article  CAS  PubMed  Google Scholar 

  6. Miao H-F, Zhu X-W, Xu D-Y, Lu D-Y, Lu M-F, Huang Z-X, Ren H-Y, Ruan W-Q (2015) Chem Eng J 279:156–165

    Article  CAS  Google Scholar 

  7. Loos G, Scheers T, Van Eyck K, Hoebeke L, Van Schepdael A, Adams E, Van der Bruggen B, Cabooter D, Dewil R (2018) Sep Purif Rev 195:184–191

    Article  CAS  Google Scholar 

  8. Jia X-H, Feng L, Liu Y-Z, Zhang L-Q (2018) Chem Eng J 345:156–164

    Article  CAS  Google Scholar 

  9. El-taliawy H, Escola Casas M, Bester K (2018) J Hazard Mater 347:288–298

    Article  CAS  PubMed  Google Scholar 

  10. Gómez MJ, Sirtori C, Mezcua M, Fernandez-Alba AR, Agüera A (2008). Water Res 42:2698–2706

    Article  CAS  PubMed  Google Scholar 

  11. Lim L, Yan F, Bach S, Pihakari K, Klein D (2016) Int J Mol Sci 17:104

    Article  CAS  PubMed Central  Google Scholar 

  12. Bade R, Rousis NI, Bijlsma L, Gracia-Lor E, Castiglioni S, Sancho JV, Hernandez F (2015) Anal Bioanal Chem 407:8979–8988

    Article  CAS  PubMed  Google Scholar 

  13. Svan A, Hedeland M, Arvidsson T, Jasper JT, Sedlak DL, Pettersson CE (2016) J Mass Spectrom 51(3):207–218

    Article  CAS  PubMed  Google Scholar 

  14. Yuan F, Hu C, Hu X, Qu J, Yang M (2009) Water Res 43:1766–1774

    Article  CAS  PubMed  Google Scholar 

  15. Agúndez JAG, Martinez C, Martin R, Benitez J (1994) Ther Drug Monit 16:316–322

    Article  PubMed  Google Scholar 

  16. Ahel M, Jeličic I, Daughton CG, Jones-Lepp TL (eds) (2001) Pharmaceuticals and personal care products in the environment, scientific and regulatory issues. American Chemical Society, Washington, D.C, pp 100–115

    Book  Google Scholar 

  17. Hollender J, Zimmermann SG, Koepke S, Krauss M, McArdell CS, Ort C, Singer H, Von Gunten U, Siegrist H (2009) Environ Sci Technol 43:7862–7869

    Article  CAS  PubMed  Google Scholar 

  18. Wiegel S, Aulinger A, Brockmeyer R, Harms H, Löffler J, Reincke H, Schmidt R, Stachel B, Von Tumpling W, Wanke A (2004). Chemosphere 57:107–126

    Article  CAS  PubMed  Google Scholar 

  19. Zuehlke, S, Duennbier, U, Heberer T (2004) J Chromatogr A 1050:201–209

    Article  CAS  Google Scholar 

  20. Gómez MJ, Martinez Bueno MJ, Lacorte S, Fernandez-Alba AR, Agüera A (2007) Chemosphere 66:993–1002

    Article  CAS  PubMed  Google Scholar 

  21. Martinez Bueno MJ, Agüera A, Gómez MJ, Hernando MD, Garcia-Reyes JF, Fernandez-Alba A (2007) Anal Chem 79:9372–9384

    Article  CAS  Google Scholar 

  22. Feldmann DF, Zuehlke S, Heberer T (2008) Chemosphere 71:1754–1764

    Article  CAS  PubMed  Google Scholar 

  23. Gyenge-Szabó Z, Szoboszlai N, Frigyes D, Záray G, Mihucz VG (2014) J Pharmaceut Biomed Anal 90:58–63

    Article  CAS  Google Scholar 

  24. Ternes TA, Stüber J, Herrmann N, McDowell D, Ried A, Kampmann M, Teiser B (2003) Water Res 37:1976–1982

    Article  CAS  PubMed  Google Scholar 

  25. Evgenidou EN, Konstantinou IK, Lambropoulou DA (2015) Sci Total Environ 505:905–926

    Article  CAS  PubMed  Google Scholar 

  26. Cai MQ, Wang R, Feng L, Zhang LQ (2015) Environ Sci Pollut 22:1854–1867

    Article  CAS  Google Scholar 

  27. Favier M, Dewil R, Van Eyck K, Van Schepdael A, Cabooter D (2015) Chemosphere 136:32–41

    Article  CAS  PubMed  Google Scholar 

  28. Jedrychowski M, Huttlin E, Haas W, Sowa M, Rad R, Gygi S (2011) Molecular Cellular Proteomics 10:M111 009910

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Marie Curie initiative project Aquabase for funding under contract number MEST-CT-2004-505169. Supervision from Prof. Dr. H. Fr. Schröder and support on the Orbitrap from W. Gebhardt from the Environmental Analytical Laboratory of the Institute of Environmental Engineering of RWTH Aachen University are also greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deirdre Cabooter.

Ethics declarations

Conflict of interest

The authors declare no financial/commercial conflict of interest.

Additional information

Published in Chromatographia’s 50th Anniversary Commemorative Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 96 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Favier, M., Van Schepdael, A. & Cabooter, D. High-Resolution MS and MSn Investigation of UV Oxidation Products of Phenazone-type Pharmaceuticals and Metabolites. Chromatographia 82, 261–269 (2019). https://doi.org/10.1007/s10337-018-3668-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-018-3668-0

Keywords

Navigation