Skip to main content
Log in

Use of a Headspace Solid-Phase Microextraction-Based Methodology Followed by Gas Chromatography–Tandem Mass Spectrometry for Pesticide Multiresidue Determination in Teas

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

This study reports on the development of a fast and efficient method based on headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography–tandem mass spectrometry (GC–MS/MS) for simultaneous analysis of 128 volatile or semi-volatile pesticide residues belonging to nine classes of pesticides. The important factors related to HS-SPME performance were optimized; these factors include fiber types, water volume, ion strength, extraction temperature, and extraction time. The best extraction conditions include a PDMS/DVB fiber, and analytes were extracted at 90 °C for 60 min from 1 g of tea added to 5 mL of 0.2 g mL−1 NaCl solution. The methodology was validated using tea samples spiked with pesticides at three concentration levels (10, 50, and 100 μg kg−1). In green tea, oolong tea, black tea, and puer tea, 82.8, 88.3, 79.7, and 84.3% of the targeted pesticides meet recoveries ranging from 70 to 120% with a relative standard deviation of ≤ 20%, respectively, when spiked at a level of 10 μg kg−1. Limits of quantification in this method for most of the pesticides were 1 or 5 μg kg−1, which are far below their maximum residue limits prescribed by EU. The optimized method was employed to analyze 30 commercial samples obtained from local markets; 17 pesticide residues were detected at concentrations of 2–452 μg kg−1. Chlorpyrifos was the most detected pesticide in 80% of the samples, and the highest concentration of dicofol (452 μg kg−1) was found in a puer tea. This is the first time to find that the optimized extraction temperature for pesticide residues is 90 °C, which is much higher than other reported HS-SPME extraction conditions in tea samples. This developed method could be used to screen over one hundred volatile or semi-volatile pesticide residues which belong to multiple classes in tea samples, and it is an accurate and reliable technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li YF, Quyang SH, Chang YQ, Wang TM, Li WX, Tian HY, Cao H, Kurihara H, He RR (2016) Food Chem 216:282–288

    Article  Google Scholar 

  2. Darvesh AS, Bishayee A (2013) Nutr Cancer 65:329–344

    Article  CAS  Google Scholar 

  3. Kraujalytė V, Pelvan E, Alasalvar C (2015) Food Chem 194:864–872

    Article  Google Scholar 

  4. E U Commission, Regulation (EC) No. 396/2005 of the European Parliament and of the Council of 23 February 2005 on Maximum Residue Levels of Pesticides in Products of Plant and Animal Origin

  5. Huo F, Tang H, Wu X, Chen D, Zhao T, Liu P, Li L (2016) J Chromatogr B 1023:44–54

    Article  Google Scholar 

  6. Duan Y, Guan N, Li P, Li J, Luo J (2016) Food Contr 59:250–255

    Article  CAS  Google Scholar 

  7. Wang Z, Chang Q, Kang J, Cao Y, Ge N, Fan C, Pang G (2015) Anal Methods 7:6385–6402

    Article  CAS  Google Scholar 

  8. Kadir HA, Abas F, Zakaria O, Ismail IS, Lajis NH (2015) Anal Methods 7:3141–3147

    Article  CAS  Google Scholar 

  9. Celeiro M, Llompart M, Lamas JP, Lores M, Garcia-Jares C, Dagnac T (2014) J Chromatogr A 1343:18–25

    Article  CAS  Google Scholar 

  10. Chiesa LM, Labella GF, Giorgi A, Panseri S, Pavlovic R, Bonacci S, Arioli F (2016) Chemosphere 154:482–490

    Article  CAS  Google Scholar 

  11. Pano-Farias NS, Ceballos-Magana SG, Gonzalez J, Jurado JM, Muniz-Valencia R (2015) J Sep Sci 38:1240–1247

    Article  CAS  Google Scholar 

  12. Tan Q, Fan J, Gao R, He R, Wang T, Zhang Y, Zhang W (2017) Talanta 164:362–367

    Article  CAS  Google Scholar 

  13. Yoshida T, Itou A, Yamamoto R, Tobino T, Murakawa H, Toda K (2013) Anal Sci 29:919–922

    Article  CAS  Google Scholar 

  14. Steinborna A, Alder L, Spitzkeb M, Doerk D, Anastassiades M (2017) J Agric Food Chem 65:1296–1305

    Article  Google Scholar 

  15. Han Y, Song L, Zou N, Chen R, Qin Y, Pan C (2016) J Chromatogr B 1031:99–108

    Article  CAS  Google Scholar 

  16. González-Curbelo MÁ, Lehotay SJ, Hernández-Borges J, Rodríguez-Delgado MÁ (2014) J Chromatogr A 1358:75–84

    Article  Google Scholar 

  17. He Z, Wang L, Peng Y, Luo M, Wang W, Liu X (2015) Food Chem 169:372–380

    Article  CAS  Google Scholar 

  18. Dawidowicz AL, Szewczyk J, Dybowski MP (2016) Anal Chim Acta 935:1–8

    Article  Google Scholar 

  19. Du L, Li J, Li W, Li Y, Li T, Xiao D (2014) Food Res Int 57:61–70

    Article  CAS  Google Scholar 

  20. Gutiérrez-Serpa A, Rocío-Bautista P, Pino V, Jiménez-Moreno F, Jiménez-Abizanda AI (2017) J Sep Sci 40:2009–2021

    Article  Google Scholar 

  21. Wu M, Wang L, Zeng B, Zhao F (2016) J Chromatogr A 1444:42–49

    Article  CAS  Google Scholar 

  22. Souza-Silva ÉA, Lopez-Avilab V, Pawliszyn J (2013) J Chromatogr A 1313:139–146

    Article  Google Scholar 

  23. Zhang S, Yang Q, Yang X, Wang W, Li Z, Zhang L, Wang C, Wang Z (2017) Talanta 166:46–53

    Article  CAS  Google Scholar 

  24. Wu F, Lu W, Chen J, Liu W, Zhang L (2010) Talanta 82:1038–1043

    Article  CAS  Google Scholar 

  25. Juan PM, Carrillo JD, Tena MT (2007) J Chromatogr A 1139:27–35

    Article  Google Scholar 

  26. Tat L, Comuzzo P, Stolfo I, Battistutta F (2005) Food Chem 93:361–369

    Article  CAS  Google Scholar 

  27. Bianco G, Novario G, Ziann IR, Cataldi TR (2009) Anal Bioanal Chem 393:2019–2027

    Article  CAS  Google Scholar 

  28. Torrens J, Riu-Aumatell M, López-Tamames E, Buxaderas S (2004) J Chromatogr Sci 42:310–316

    Article  CAS  Google Scholar 

  29. Menezes Filho A, dos Santos FN, de Paula Pereira PA (2010) Talanta 81:348–354

    Article  Google Scholar 

  30. Verzera A, Ziino M, Condurso C, Romeo V, Zappala M (2004) Anal Bioanal Chem 380:930–936

    Article  CAS  Google Scholar 

  31. Xu X, Yu C, Han J, Li J, El-Sepai F, Zhu Y, Huang B, Cai Z, Wu H, Ren Y (2011) J Sep Sci 34:210–216

    Article  CAS  Google Scholar 

  32. Feng J, Tang H, Chen D, Wang G, Li L (2012) Anal Methods 4:4198–4203

    Article  CAS  Google Scholar 

  33. Hayward DG, Wong JW, Park HY (2015) J Agric Food Chem 63:8116–8124

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Key Basic Research Program (NO. 2015FY111200) of the Ministry of Science and Technology, P. R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunlin Fan.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest with this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 145

 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhang, Z., Sun, M. et al. Use of a Headspace Solid-Phase Microextraction-Based Methodology Followed by Gas Chromatography–Tandem Mass Spectrometry for Pesticide Multiresidue Determination in Teas. Chromatographia 81, 809–821 (2018). https://doi.org/10.1007/s10337-018-3499-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-018-3499-z

Keywords

Navigation