Skip to main content
Log in

De Novo Design of a Cyclic Polyhistidine Peptide for Binding with Quantum Dots: Self-Assembly Investigation Using Capillary Electrophoresis

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

In this study, a cyclic disulfide-bonded peptide (ATTO 590-cyclo(2,11)-HCHVH DPLPHLHCH, clyco(ATTO-HCHV) was designed and synthesized. The β-turn design by the dipeptide d-Pro-l-Pro and the intradisulfide bridge using two cysteines make all histidines residues align on one face of the peptide, suggesting less steric hindrance during the self-assembly with quantum dots (QDs) and higher binding affinity than histag. QDs and clyco(ATTO-HCHV) at different molar ratio were sequentially injected into the capillary; strong Förster resonance energy transfer (FRET) signals were observed in both donor and acceptor channels, indicating the efficient binding of the novel cyclic peptide ligand onto the QDs to form clyco(ATTO-HCHV)-QD assembly inside the capillary. Capillary electrophoresis coupled with fluorescence detection (CE-FL) results indicated that the cyclic ligand clyco(ATTO-HCHV) had a much higher binding affinity than that of the linear form peptide ligand ATTO-HCHV. Additionally, the interval time of the injection and the sampling time were also investigated using CE-FL combining with FRET technology. Lastly, the stability of clyco(ATTO-HCHV)-QD was systematically examined in the presence of the imidazole competitor. It is believed that this new in-capillary assay significantly reduced the sample consumption and the analysis time.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Na N, Liu L, Taes YE, Zhang C, Huang B, Liu Y, Ma L, Ouyang J (2010) Direct CdTe quantum-dot-based fluorescence imaging of human serum proteins. Small 6:1589–1592

    Article  CAS  PubMed  Google Scholar 

  2. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52

    Article  CAS  PubMed  Google Scholar 

  4. Clapp AR, Medintz IL, Mauro JM, Fisher BR, Bawendi MG, Mattoussi H (2004) Fluorescence resonance energy transfer between quantum dot donors anddye-labeled protein acceptors. J Am Chem Soc 126:301–310

    Article  CAS  PubMed  Google Scholar 

  5. Sapsford KE, Pons T, Medintz IL, Higashiya S, Brunel FM, Dawson PE, Mattoussi H (2007) Kinetics of metal-affinity driven self-assembly between proteins or peptides and CdSe-ZnS quantum dots. J Phys Chem C 111:11528–11538

    Article  CAS  Google Scholar 

  6. Hainfeld JF, Liu W, Halsey CM, Freimuth P, Powell RD (1999) Ni-NTA-gold clusters target His-tagged proteins. J Struct Biol 127:185–198

    Article  CAS  PubMed  Google Scholar 

  7. Hochuli E, Bannwarth W, Döbeli H, Gentz R, Stüber D (1988) Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. Nat Biotechnol 6:1321–1325

    Article  CAS  Google Scholar 

  8. Wang JH, Xia J (2011) Preferential binding of a novel polyhistidine peptide dendrimer ligand on quantum dots probed by capillary electrophoresis. Anal Chem 83:6323–6329

    Article  CAS  PubMed  Google Scholar 

  9. Wang JH, Zhang CC, Liu L, Karunakaran AK, Qiu L, Ding SM, Fu ML, Gao LQ, Jiang PJ (2016) A capillary electrophoresis method to explore the self-assembly of a novel polypeptide ligand with quantum dots. Electrophoresis 37:2156–2162

    Article  CAS  PubMed  Google Scholar 

  10. Wang JH, Li LC, Zhang CC, Fan J, Yang L, Gu YQ, Liu FF, Wang CL, Dong BY, Qiu L, Jiang PJ (2015) In-capillary probing QDs and HAT tag self-assembly and displacement using Förster resonance energy transfer. Electrophoresis 36:2636–2641

    Article  CAS  PubMed  Google Scholar 

  11. Li YQ, Guan LY, Wang JH, Zhang HL, Chen J, Lin S, Chen W, Zhao YD (2010) Simultaneous detection of dual single-base mutations by capillary electrophoresis using quantum dot-molecular beacon probe. Biosens Bioelectron 26:2317–2322

    Article  CAS  PubMed  Google Scholar 

  12. Li YQ, Wang JH, Zhang HL, Yang J, Guan LY, Chen H, Luo QM, Zhao YD (2010) High-sensitivity quantum dot-based fluorescence resonance energy transfer bioanalysis by capillary electrophoresis. Biosens Bioelectron 25:1283–1289

    Article  CAS  PubMed  Google Scholar 

  13. Mendonsa SD, Bowser MT (2003) In vitro evolution of functional DNA usingcapillary electrophoresis. J Am Chem Soc 126:20–21

    Article  CAS  Google Scholar 

  14. Mendonsa SD, Bowser MT (2005) In vitro selection of aptamers with affinity forneuropeptide Y using capillary electrophoresis. J Am Chem Soc 127:9382–9383

    Article  CAS  PubMed  Google Scholar 

  15. Mendonsa SD, Bowser MT (2004) In vitro selection of high-affinity DNA ligands forhuman IgE using capillary electrophoresis. Anal Chem 76:5387–5392

    Article  CAS  PubMed  Google Scholar 

  16. Clapp AR, Medintz IL, Mauro JM, Fisher BR, Bawendi MG, Mattoussi H (2004) Fluorescence resonance energy transfer between quantum dot donors anddye-labeled protein acceptors. J Am Chem Soc 126:301–310

    Article  CAS  PubMed  Google Scholar 

  17. Nikiforov T, Beechem JM (2006) Development of homogeneous binding assaysbased on fluorescence resonance energy transfer between quantum dots andAlexa Fluor fluorophores. Anal Biochem 357:68–76

    Article  CAS  PubMed  Google Scholar 

  18. Chang YQ, Cai C, Li LY, Miao JJ, Ucakturk E, Li GY, Ly M, Linhardt RJ (2013) Ultrasensitive detection and quantification of acidic disaccharides using capillary electrophoresis and quantum dot-based fluorescence resonance energy transfer. Anal Chem 85:9356–9362

    Article  CAS  PubMed  Google Scholar 

  19. Hohng S, Ha T (2005) Single-molecule quantum-dot fluorescence resonance energytransfer. ChemPhysChem 6:956–960

    Article  CAS  PubMed  Google Scholar 

  20. Wang JH, Li JY, Li JC, Liu FF, Zhou X, Yao Y, Wang CL, Qiu L, Jiang PJ (2015) In-capillary self-assembly and proteolytic cleavage of polyhistidine peptide capped quantum dots. Anal Chem Acta 895:112–117

    Article  CAS  Google Scholar 

  21. Stanisavljevic M, Chomoucka J, Dostalova S, Krizkova S (2014) Interactions between CdTe quantum dots and DNA revealed by capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis 35:2587–2592

    Article  CAS  PubMed  Google Scholar 

  22. John AR (2008) β-Hairpin peptidomimetics: design, structures and biological activities. Acc Chem Res 41:1278–1288

    Article  CAS  Google Scholar 

  23. Freeman R, Finder T, Gill R, Willner I (2010) Probing protein kinase (CK2) and alkaline phosphatase with CdSe/ZnS quantum dots. Nano Lett 10:2192–2196

    Article  CAS  PubMed  Google Scholar 

  24. Gao L, Uttamchandani M, Yao SQ (2012) Comparative proteomic profiling of mammalian cell lysates using phosphopeptide microarrays. Chem Commun 48:2240–2242

    Article  CAS  Google Scholar 

  25. Gao L, Yu Z, Meng D, Zheng F, Ong YS, Miao P, Lee SS, Wen L (2015) Analogue of melanotan II (MT II): a novel melanotropin with superpotent action on frog skin. Protein Peptide Lett 22:762–766

    Article  CAS  Google Scholar 

  26. Gao L, Sun H, Uttamchandani M, Yao SQ (2013) Phosphopeptide microarrays for comparative proteomic profiling of cellular lysates. Methods Mol Biol 1002:233–251

    Article  CAS  PubMed  Google Scholar 

  27. Sun T, Han H, Hudalla GA, Wen Y, Pompano RR, Collier JH (2016) Thermal stability of self-assembled peptide vaccine materials. Acta Biomater 30:62–71

    Article  CAS  PubMed  Google Scholar 

  28. Wang JH, Jiang PJ, Qiu L, Wang CL, Xia J (2015) Resolving antibody-peptide complexes with different ligand stoichiometries reveals a marked affinity enhancement through multivalency. Talanta 115:394–400

    Article  CAS  Google Scholar 

  29. Wang JH, Xia J (2012) Capillary electrophoretic studies on displacement and proteolytic cleavage of surface bound oligohistidine peptide on quantum dots. Anal Chim Acta 709:120–127

    Article  CAS  PubMed  Google Scholar 

  30. Lu Y, Wang JP, Wang JH, Wang L, Au SW, Xia J (2012) Genetically encodable design of ligand “bundling” on the surface of nanoparticles. Langmuir 28:13788–13792

    Article  CAS  PubMed  Google Scholar 

  31. Liu WH, Greytak AB, Lee J, Wong CR, Park J, Marshall LF, Jiang W, Curtin PN, Ting AY, Nocera DG, Fukumura D, Jain RK, Bawendi MG (2010) Compact biocompatible quantum dots via raft-mediated synthesis of imidazole-based random copolymer ligand. J Am Chem Soc 132:472–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation (Grant Number 21602020), the Natural Science Foundation of Jiangsu Province (Grant No. BK20141170), the Project of Jiangsu Province Industry-University-Research joint innovation fund (Grant No. BY2016029-22) and the International Scientific Cooperation Project of Changzhou Scientific Bureau (Grant No. CZ20160015). This work was also supported by the Advanced Catalysis and Green Manufacturing Collaborative Innovation Center of Changzhou University, and the 333 Project of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianhao Wang or Pengju Jiang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human Rights and Participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Published in the topical collection Peptide and Protein Analysis with Debby Mangelings and Gerhard K. E. Scriba as editors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, L., Zhang, C., Gu, T. et al. De Novo Design of a Cyclic Polyhistidine Peptide for Binding with Quantum Dots: Self-Assembly Investigation Using Capillary Electrophoresis. Chromatographia 81, 41–46 (2018). https://doi.org/10.1007/s10337-017-3319-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-017-3319-x

Keywords

Navigation