Skip to main content
Log in

A Particulate Biochromatographic Support for the Research of Arginase Inhibitors Doped with Nanomaterials: Differences Observed Between Carbon and Boron Nitride Nanotubes. Application to Three Plant Extracts

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The arginase enzyme was bound to porous silica using a reactive polymer where two types of nanomaterials were entrapped, i.e., carbon nanotubes (CNTs) and boron nitride nanotubes (BNNTs). For the first time, it was shown that BNNTs were highly efficient for increasing the performance of a particulate bioactive support. Also, we demonstrated that BNNTs enhanced more strongly this effect in comparison with CNTs. In addition, with this novel bioactive support, the relative IC50 values of the well-known arginase inhibitors were found to be in agreement with those derived by the conventional spectrometric method. It was shown the ethylacetate extract of the roots of Spirotropis longifolia (SL) and of the ethanol extract of sunflower (Helianthus annuus) seed (SS) and Lonicera japonica Thunb, i.e., honeysuckle (H) on the arginase activity inhibited the enzyme activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bagnost T, Ling M, DA Silva RF, Rezakhaniha R, Houdayer C, Stergiopoulos N, Andre C, Guillaume YC, Berthelot A, Demougeot C (2010) Cardiovasc Res. 87:569–577

    Article  CAS  Google Scholar 

  2. Bagnost T, Demougeot C, Andre C, Laurant P, Guillaume YC, Berthelot A (2008) J Hypertens 26:1110–1118

    Article  CAS  Google Scholar 

  3. Andre C, Ibrahim F, Gharbi T, Herlem G, Guillaume YC (2010) J Chromatogr B 878:2826–2830

    Article  CAS  Google Scholar 

  4. Nunez O, Nakanishi K, Tanaka N (2008) J Chromatogr A 1191:231–252

    Article  CAS  Google Scholar 

  5. Miyazaki S, Takahashi M, Ohira M (2011) J Chromatogr A 2011:1988–1994

    Article  Google Scholar 

  6. Girelli AM, Mattei E, Messina A (2007) Sens Actuator B Chem 121:515–521

    Article  CAS  Google Scholar 

  7. Spross J, Sinz A (2010) Anal Chem 82:1434–1443

    Article  CAS  Google Scholar 

  8. Mancini F, Naldi M, Cavrini V (2007) J Chromatogr A 1175:217–226

    Article  CAS  Google Scholar 

  9. Mancini F, Andrisano V (2010) J Pharm Biomed Anal 52:355–361

    Article  CAS  Google Scholar 

  10. Li M, Yang J, Qu H, Zhang Q, Bai F, Bai G (2014) Appl Biochem Microbiol 50:43–48

    Article  CAS  Google Scholar 

  11. Hu FL, Deng CH, Zhang XM (2008) J Chromatogr B 871:67–71

    Article  CAS  Google Scholar 

  12. Xi FN, Wu JM (2006) React Funct Polym 66:682–688

    Article  CAS  Google Scholar 

  13. Lu ZL, Zhang PF, Li J (2010) J Chromatogr A 1217:4958–4964

    Article  Google Scholar 

  14. Bagnost T, Guillaume YC, Thomassin M, Robert JF, Berthelot A, Xicluna A, Andre C (2007) J Chromatogr B 856:113–120

    Article  CAS  Google Scholar 

  15. Andre C, Herlem G, Gharbi T, Guillaume YC (2011) J Pharm Biomed Anal 55:48–53

    Article  CAS  Google Scholar 

  16. Andre C, Agiovlasileti D, Guillaume YC (2011) Talanta 15:2703–2706

    Article  Google Scholar 

  17. Lee GKC, Kwok SY, Yu CH, Tam K, Chong HC, Leung YC, Tsang SCHE (2012) Chem Commun 48:7693–7695

    Article  CAS  Google Scholar 

  18. Rubio A, Corkill M, Cohen ML (1994) Phys Rev B 49:5081–5084

    Article  CAS  Google Scholar 

  19. Kraschmer W, Lamb LD, Fostiropoulos K, Huffman D (1990) Nature 347:354–358

    Article  Google Scholar 

  20. Han W, Bando Y, Kurashima K, Sato T (1998) Appl Phys Lett 73:3085–3087

    Article  CAS  Google Scholar 

  21. Chen H, Chen Y, Liu Y, Fu L, Huang C, Llewellyn D (2008) Chem Phys Lett 463:130–133

    Article  CAS  Google Scholar 

  22. Bechelany M, Bernard S, Brioude A, Cornu D, Stadelmann P, Charcosset C, Fiaty K, Miele P (2007) J Phys Chem 111:13378–13384

    CAS  Google Scholar 

  23. Andre C, Guillaume YC (2012) Talanta 15:274–278

    Article  Google Scholar 

  24. Lim CJ, Cuong TD, Huang TM, Ryoo S, Lee JH, Kim EH, Woo MH, Choi JS, Min BS (2012) Bull Korean Chem Soc 38:3079–3082

    Article  Google Scholar 

  25. Basset C, Rodrigues AMS, Eparvier V, Silva MRR, Lopes NP, Sabatier D, Fonty E, Espindola LS, Stien D (2012) Phytochemistry 74:166–172

    Article  CAS  Google Scholar 

  26. Sripad G, Prakash V, Narasinga Rao MS (1982) J Biosci 4:145–152

    Article  CAS  Google Scholar 

  27. Zhang L, Liu J, Zhang P, Yan S, He X, Chen F (2011) Chromatographia 73:129–133

    Article  CAS  Google Scholar 

  28. Millot MC, Sebille B, Mangin C (1997) J Chromatogr A 776:37–44

    Article  CAS  Google Scholar 

  29. Schallreuter KU, Elwari SMA, Gibbons NCJ, Rokos H, Wood JM (2004) Biochem Biophys Res Commun 315:502–508

    Article  CAS  Google Scholar 

  30. Roholt OA, Greenberg DM (1956) Arch Biochem Biophys 62:454–470

    Article  CAS  Google Scholar 

  31. Reczkowski RR (1991) Characterization of the kinetic and catalytic mechanisms of rat liver arginase. PhD Thesis, Temple university

  32. Sossong TM Jr, Khangulov SV, Cavalli RC, Soprano DR, Dismukes CC, Ash DE (1997) J Biol Inorg Chem 2:433–443

    Article  CAS  Google Scholar 

  33. Nicholson B, Manner CK, Kleeman J, MacLeod CL (2001) J Biol Chem 276:15881–15885

    Article  CAS  Google Scholar 

  34. Custot J, Moali C, Brollo M, Boucher JL, Delaforge M, Mansuy D, Tenu JP, Zimmermann JL (1997) J Am Chem Soc 119:4086–4087

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Claude Guillaume.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

André, C., Kapustikova, I., Lethier, L. et al. A Particulate Biochromatographic Support for the Research of Arginase Inhibitors Doped with Nanomaterials: Differences Observed Between Carbon and Boron Nitride Nanotubes. Application to Three Plant Extracts. Chromatographia 77, 1521–1527 (2014). https://doi.org/10.1007/s10337-014-2752-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-014-2752-3

Keywords

Navigation