Skip to main content
Log in

Cold weather increases winter site fidelity in a group-living passerine

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Site fidelity during the non-breeding season is beneficial if habitat quality and environmental predictability are high. In group-living species, the costs and benefits of site fidelity may be linked to the non-social (weather) and social (dominance hierarchy) environments, but little is known about factors influencing movements during the non-breeding season. We studied both within- and between-winter site fidelity of the great tit (Parus major), a partial migrant in northern Finland. We collected mark-resight data on wintering great tits across two winters at multiple sites, and tested for the effects of age, sex, season, temperature and day length on site fidelity. Within-winter movement was lower during mid-winter and decreased during cold periods. This pattern is probably linked to energy saving and predator escaping strategies during these demanding periods when energy expenditure is high and birds have limited daylight hours to forage. Site fidelity was lower for juveniles than adults within a winter, but it was unaffected by sex. These results agree with an age related dominance structure and site-specific dominance found in great tits, but they can also be related to prior experience as young individuals still collect information during their first winter. In contrast, between-winter site fidelity was not affected by age or sex, suggesting equal benefits from site fidelity. Juveniles probably gather information on resource abundance and distribution in their first winter, and thereby gain the same benefits as adults from returning the next winter.

Zusammenfassung

Kaltes wetter im winter erhöht die standorttreue sozial lebender sperlingsvögel

Standorttreue außerhalb der Brutperiode ist dann von Nutzen, wenn die Habitatqualität hoch und die Umgebungsbedingungen stabil sind. Bei in Gruppen lebenden Arten hängen Kosten und Nutzen von Standorttreue möglicherweise auch mit nicht-sozialen Faktoren (Wetter) und mit sozialen Umgebungsbedingungen (Dominanz-Hierarchien) zusammen. Man weiß aber nur wenig über Faktoren, die die Ortsveränderungen der Vögel außerhalb der Brutsaison beeinflussen. Wir untersuchten die Standorttreue der Kohlmeise (Parus major), einem Teilzieher in Nord-Finnland, sowohl während des Winters als auch zwischen Wintern. Hierfür sammelten wir an unterschiedlichen Standorten Wiederfang-Daten von Kohlmeisen und untersuchten diese auf mögliche Auswirkungen von Geschlecht, Alter, Saison, Temperatur und Tageslänge auf die Standorttreue. Die Ortsveränderungen waren während des Mittwinters geringer und nahmen während Kälteperioden ab. Dieses Verhaltensmuster steht wahrscheinlich in Zusammenhang mit Strategien zum Sparen von Energie und Vermeiden von Räubern während dieser schwierigen Jahreszeit, wenn der Energieverbrauch hoch ist und den Vögeln nur wenig Tageslicht zum Futtersammeln bleibt. Während des Winters zeigten Jungtiere weniger Standorttreue als ältere Tiere, ein Zusammenhang mit dem Geschlecht konnte jedoch nicht nachgewiesen werden. Diese Ergebnisse passen gut zu einer von Kohlmeisen bekannten altersabhängigen Dominanz-Struktur sowie Standort-spezifischen Dominanz. Sie können aber auch zu früheren Erfahrungen der Vögel in Beziehung gesetzt werden, da Jungtiere während ihres ersten Winters noch Informationen sammeln. Im Gegensatz dazu gab es in der Zeit zwischen Wintern keinerlei Einfluss vom Alter und Geschlecht der Vögel auf die Standorttreue. Jungtiere sammeln wahrscheinlich in ihrem ersten Winter Informationen zum Vorhandensein und der Verbreitung von Nahrungsquellen, was ihnen vermutlich die gleichen Vorteile schafft wie älteren Tieren, die im nächsten Winter wiederkehren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andreu J, Barba E (2006) Breeding dispersal of great tits Parus major in a homogeneous habitat: effects of sex, age, and mating status. Ardea 94:45–58

    Google Scholar 

  • Aplin LM, Farine DR, Morand-Ferron J, Cole EF, Cockburn A, Sheldon BC (2013) Individual personalities predict social behaviour in wild networks of great tits (Parus major). Ecol Lett 16:1365–1372

    Article  CAS  PubMed  Google Scholar 

  • Bartón K (2016) Package MuMIn: multi-model inference for R, R Package version 1.15.6. Accessed 30 Oct 2016 at: http://CRAN.R-project.org/package=MuMIn

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Belda EJ, Barba E, Monrós JS (2007) Resident and transient dynamics, site fidelity and survival in wintering blackcaps Sylvia atricapilla: evidence from capture–recapture analyses. Ibis 149:396–404

    Article  Google Scholar 

  • Blackburn E, Cresswell W (2016) High winter site fidelity in a long-distance migrant: implications for wintering ecology and survival estimates. J Ornithol 157:93–108

    Article  Google Scholar 

  • Bowler DE, Benton TG (2005) Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev 80:205–225

    Article  PubMed  Google Scholar 

  • Broggi J, Hohtola E, Koivula K, Orell M, Thomson RL, Nilsson J-Å (2007) Sources of variation in winter basal metabolic rate in the great tit. Func Ecol 21:528–533

    Article  Google Scholar 

  • Broggi J, Orell M, Hohtola E, Nilsson J-Å (2004) Metabolic response to temperature variation in the great tit: an interpopulation comparison. J Anim Ecol 73:967–972

    Article  Google Scholar 

  • Báldi A, Csörgő T (1991) Effect of environmental factors on tits wintering in a Hungarian marshland. Ornis Hungarica 1:29–36

    Google Scholar 

  • Catry T, Alves JA, Gill JA, Gunnarsson TG, Granadeiro JP (2012) Sex promotes spatial and dietary segregation in a migratory shorebird during the non-breeding season. PLoS ONE 7:e33811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cote J, Clobert J, Brodin T, Fogarty S, Sih A (2010) Personality-dependent dispersal: characterization, ontogeny and consequences for spatially structured populations. Phil Trans R Soc B 365:4065–4076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cresswell W (1994) Flocking is an effective anti-predation strategy in redshanks, Tringa totanus. Anim Behav 47:433–442

    Article  Google Scholar 

  • Cresswell W (2014) Migratory connectivity of Palaearctic-African migratory birds and their responses to environmental change: the serial residency hypothesis. Ibis 156:493–510

    Article  Google Scholar 

  • De Laet J (1984) Site-related dominance in the great tit Parus major major. Ornis Scandinavica 15:73–78

    Article  Google Scholar 

  • De Laet J (1985) Dominance and anti-predator behaviour of great tits Parus major: a field study. Ibis 127:372–377

    Article  Google Scholar 

  • Dingemanse NJ, Bouwman KM, van de Pol M, van Overveld T, Patrick SC, Matthysen E, Quinn JL (2012) Variation in personality and behavioural plasticity across four populations of the Great tit Parus major. J Anim Ecol 81:116–126

    Article  PubMed  Google Scholar 

  • Doligez B, Danchin E, Clobert J, Gustafsson L (1999) The use of conspecific reproductive success for breeding habitat selection in a non-colonial, hole-nesting species, the collared flycatcher. J Anim Ecol 68:1193–1206

    Article  Google Scholar 

  • Ekman J (1989) Ecology of non-breeding social systems of Parus. Wilson Bull 101:263–288

    Google Scholar 

  • Ekman J (1990) Alliances in winter flocks of willow tits—effects of rank on survival and reproductive success in male–female associations. Behav Ecol Sociobiol 26:239–245

    Article  Google Scholar 

  • Elgar MA (1989) Predator vigilance and group size in mammals and birds: a critical review of the empirical evidence. Biol Rev 64:13–33

    Article  CAS  PubMed  Google Scholar 

  • Firth JA, Voelkl B, Farine DR, Sheldon BC (2015) Experimental evidence that social relationships determine individual foraging behavior. Curr Biol 25:3138–3143

    Article  CAS  PubMed  Google Scholar 

  • Grist H, Daunt F, Wanless S, Nelson EJ, Harris MP, Newell M, Burthe S, Reid JM (2014) Site fidelity and individual variation in winter location in partially migratory European shags. PLoS ONE 9(6):e98562

    Article  PubMed  PubMed Central  Google Scholar 

  • Grubb TC (1978) Weather-dependent foraging rates of wintering woodland birds. Auk 95:370–376

    Google Scholar 

  • Hogstad O (1989) Social organization and dominance behavior in some Parus species. Wilson Bull 101:254–262

    Google Scholar 

  • Hogstad O (2014) Ecology and behaviour of winter floaters in a subalpine population of willow tits, Poecile montanus. Ornis Fenn 91:29–38

    Google Scholar 

  • Hogstad O (2015a) Rank-related response in foraging site selection and vigilance behaviour of a small passerine to different winter weather conditions. Ornis Fenn 92:53–62

    Google Scholar 

  • Hogstad O (2015b) Social behaviour in the non-breeding season in great tits Parus major and Willow tits Poecile montanus: differences in juvenile birds’ route to territorial ownership, and pair-bond stability and mate protection in adults. Ornis Norvegica 38:1–8

    Article  Google Scholar 

  • Karvonen J, Orell M, Rytkönen S, Broggi J, Belda E (2012) Population dynamics of an expanding passerine at the distribution margin. J Avian Biol 43:102–108

    Article  Google Scholar 

  • Koivula K, Lahti K, Orell M, Rytkönen S (1993) Prior residency as a key determinant of social dominance in the willow tit (Parus montanus). Behav Ecol Sociobiol 33:283–287

    Article  Google Scholar 

  • Koivula K, Orell M, Lahti K (2002) Plastic daily fattening routines in willow tits. J Anim Ecol 71:816–823

    Article  Google Scholar 

  • Krams I (1998) Dominance-specific vigilance in the great tit. J Avian Biol 29:55–60

    Article  Google Scholar 

  • Krams I (2000) Length of feeding day and body weight of great tits in a single- and a two-predator environment. Behav Ecol Sociobiol 48:147–153

    Article  Google Scholar 

  • Krams I, Cirule D, Suraka V, Krama T, Rantala MJ, Ramey G (2010) Fattening strategies of wintering great tits support the optimal body mass hypothesis under conditions of extremely low ambient temperature. Func Ecol 24:172–177

    Article  Google Scholar 

  • Krams I, Cīrule D, Vrublevska J, Nord A, Rantala MJ, Krama T (2013) Nocturnal loss of body reserves reveals high survival risk for subordinate great tits wintering at extremely low ambient temperatures. Oecologia 172:339–346

    Article  PubMed  Google Scholar 

  • Krištín A, Kaňuch P (2016) Stay or go? Strong winter feeding site fidelity in small woodland passerines revealed by a homing experiment. J Ornithol 158:53–61

    Article  Google Scholar 

  • Lahti K, Orell M, Rytkönen S, Koivula K (1998) Time and food dependence in willow tit winter survival. Ecology 79:2904–2916

    Article  Google Scholar 

  • Lange H, Leimar O (2004) Social stability and daily body mass gain in great tits. Behav Ecol 15:549–554

    Article  Google Scholar 

  • Lourenço PM, Alves JA, Reneerkens J, Loonstra AJ, Potts PM, Granadeiro JP, Catry T (2016) Influence of age and sex on winter site fidelity of sanderlings Calidris alba. PeerJ 4:e2517

    Article  PubMed  PubMed Central  Google Scholar 

  • Masman D, Klaassen M (1987) Energy expenditure during free flight in trained and free-living Eurasian kestrels (Falco tinnunculus). Auk 104:603–616

    Google Scholar 

  • Mérő TO, Žuljević A (2014) Does the weather influence the autumn and winter movements of tits (Passeriformes: paridae) in urban areas? Acta Zool Bulg 66:505–510

    Google Scholar 

  • Newton I (2008) The migration ecology of birds. Academic Press, Oxford

    Google Scholar 

  • Newton I (2012) Obligate and facultative migration in birds: ecological aspects. J Ornithol 153:S171–S180

    Article  Google Scholar 

  • Nowakowski JK, Vähätalo AV (2003) Is the great tit Parus major an irruptive migrant in North-east Europe? Ardea 91:231–244

    Google Scholar 

  • Orell M (1989) Population fluctuations and survival of great tits Parus major dependent on food supplied by man in winter. Ibis 131:112–127

    Article  Google Scholar 

  • Orell M, Ojanen M (1983) Timing and length of the breeding season of the great tit Parus major and the willow tit P. montanus near Oulu. Northern Finland. Ardea 71:183–198

    Google Scholar 

  • Pakanen VM, Koivula K, Flodin L-Å, Grissot A, Hagstedt R, Larsson M, Pauliny A, Rönkä N, Blomqvist D (2017) Between-patch natal dispersal declines with increasing natal patch size and distance to other patches in the endangered southern Dunlin Calidris alpina schinzii. Ibis 159:611–622

    Article  Google Scholar 

  • Pakanen V-M, Lampila S, Arppe H, Valkama J (2015) Estimating sex specific apparent survival and dispersal of little ringed plovers (Charadrius dubius). Ornis Fenn 92:172–186

    Google Scholar 

  • Payevsky VA (2006) Mortality rate and population density regulation in the great tit, Parus major L.: a review. Russ J Ecol 37:180–187

    Article  Google Scholar 

  • Piper WH (2011) Making habitat selection more “familiar”: a review. Behav Ecol Sociobiol 65:1329–1351

    Article  Google Scholar 

  • R Development Core Team (2014) R: A language and environment for statistical computing version 3.0.1. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org/

  • Robertson GJ, Cooke F (1999) Winter philopatry in migratory waterfowl. Auk 116:20–34

    Article  Google Scholar 

  • Sandell M, Smith HG (1991) Dominance, prior occupancy, and winter residency in the great tit (Parus major). Behav Ecol Sociobiol 29:147–152

    Article  Google Scholar 

  • Sandercock BK (2006) Estimation of demographic parameters from live-encounter data: a summary review. J Wildl Man 70:1504–1520

    Article  Google Scholar 

  • Sauter A, Korner-Nievergelt F, Jenni L (2010) Evidence of climate change effects on within-winter movements of European mallards Anas platyrhynchos. Ibis 152:600–609

    Article  Google Scholar 

  • Svensson L (1992) Identification guide to European passerines. British Trust for Ornithology, Norfolk

    Google Scholar 

  • Switzer PV (1993) Site fidelity in predictable and unpredictable habitats. Evol Ecol 7:533–555

    Article  Google Scholar 

  • Tatner P, Bryant DM (1986) Flight cost of a small passerine measured using doubly labeled water: implications for energetics studies. Auk 103:169–180

    Google Scholar 

  • Tolvanen J, Pakanen V-M, Valkama J, Tornberg R (2017) Apparent survival, territory turnover and site fidelity rates in northern goshawk Accipiter gentilis populations close to northern range limit. Bird Study 64:168–177

    Article  Google Scholar 

  • Van Balen JH (1980) Population fluctuations in the winter great tit and feeding conditions in winter. Ardea 68:143–164

    Google Scholar 

  • van Overveld T, Careau V, Adriaensen F, Matthysen E (2014) Seasonal- and sex-specific correlations between dispersal and exploratory behaviour in the great tit. Oecologia 174:109–120

    Article  PubMed  Google Scholar 

  • Valkama J, Saurola P, Lehikoinen A, Lehikoinen E, Piha M, Sola P, Velmala W (2014) The finnish bird ringing atlas, vol II. Finnish Museum of Natural History and Ministry of Environment, Helsinki

    Google Scholar 

Download references

Acknowledgements

We thank all the volunteers that helped during ringing and resighting, especially Ari-Pekka Auvinen, Toni Eskelin, Juhani Hopkins, Juha Kiiski, Reetta Kivioja, Satu Lampila, Laura-Lotta Muurinen, Petri Niemelä, Suvi Ponnikas and Elina Seppänen. We thank the local bird club (PPLY) and Jukka Piispanen for collaboration at the Hyry feeding site. We thank Esa Hohtola for valuable discussions, and Indrikis Krams and two anonymous referees for constructive comments on the manuscript. The study was funded by the Academy of Finland, Research Council for Biosciences and Environment (278759 to VMP, 258638, 128193 and 106811 to MO), the Finnish Cultural Foundation (VMP) and the Thule Institute (JK). Data collection in this study was done under licence from the Finnish Museum of Natural History and complies with the current national law.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veli-Matti Pakanen.

Ethics declarations

Funding

This study was funded by Academy of Finland (Grant numbers 278759, 258638, 128193 and 106811), the Finnish Cultural Foundation and the Thule Institute.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

The datasets during and/or analysed during the current study are available from the corresponding author on reasonable request.

Additional information

Communicated by N. Chernetsov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1302 kb)

Supplementary material 2 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakanen, VM., Karvonen, J., Mäkelä, J. et al. Cold weather increases winter site fidelity in a group-living passerine. J Ornithol 159, 211–219 (2018). https://doi.org/10.1007/s10336-017-1505-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-017-1505-0

Keywords

Navigation