Skip to main content
Log in

Combining direct and indirect tracking techniques to assess the impact of sub-Saharan conditions on cross-continental songbird migration

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Understanding how events throughout the annual cycle interact to influence individual fitness and hence population dynamics is crucial to optimize conservation strategies for migratory birds. Despite major advancements in technology, direct tracking devices for passerine songbirds are still limited by the need for recapturing tagged individuals. Stable-isotope analysis of bird tissue has the opportunity to supply information on a larger number of individuals, although it is limited by the indirect knowledge of the geographical position of the birds. In this study, we provide a first attempt to combine annual spatio-temporal data achieved from direct tracking with information on local environmental conditions by using stable isotopes (δ 13C and δ 15N). We use this approach to investigate if environmental conditions at the wintering area in southern Africa influence timing of spring migration and carry-over to affect breeding performance in a long-distance migratory passerine bird, the Red-backed Shrike (Lanius collurio). We found that individuals wintering in relatively moist conditions (depleted in δ 13C) and at lower latitudes (closer to the breeding grounds) departed later on spring migration than individuals in more xeric habitats. However, the effect of non-breeding area conditions and latitude were not found at subsequent migration stages and late departing individuals spent fewer days on migration towards the breeding grounds. Although conditions in the non-breeding range have previously been suggested to influence population fluctuations in Red-backed Shrikes, we found no evidence of a carry-over effect on breeding performance. This study highlights the potential of combining different approaches when investigating seasonal interactions in migratory animals.

Zusammenfassung

Kombination von direkten und indirekten Ortungsmethoden zur Bewertung des Einflusses der Bedingungen in der Subsahara auf den interkontinentalen Zug von Singvögeln Das Verständnis dafür, wie die diversen Ereignisse im Verlauf eines ganzen Jahres miteinander zusammenhängen und die individuelle Fitness und damit die gesamte Populationsdynamik beeinflussen, ist ausschlaggebend für die Optimierung von Strategien zum Schutz von Zugvögeln. Trotz erheblicher technischer Fortschritte besteht die Einschränkung, dass Geräte zur direkten Ortung davon abhängig sind, damit ausgestattete Vögel wiederfangen zu müssen. Die Analyse stabiler Isotope aus Vogelgeweben bietet die Möglichkeit, Informationen von einer großen Anzahl Individuen zu sammeln, ist aber dadurch eingeschränkt, dass sie keine direkten Informationen über die geographische Position der Vögel liefert. In dieser Untersuchung stellen wir einen ersten Versuch vor, räumlich-zeitliche Daten aus direkten Ortungen mit Informationen über lokale Umgebungsbedingungen, gewonnen aus Bestimmungen stabiler Isotopen (δ 13C and δ 15N), zu kombinieren. Dieser Ansatz wurde gewählt, um herauszufinden, ob die Umgebungsbedingungen an den Überwinterunsgplätzen im südlichen Afrika den Beginn des Frühjahrszugs beeinflussen und beim Langstreckenzieher, dem Neuntöter (Lanius collurio), eventuell noch auf den Bruterfolg durchwirken. Wir stellten fest, dass Vögel, die in einer relativ feuchten Umgebung (wenig δ 13C ) und in geringeren geographischen Breiten (näher an den Brutgebieten) überwintert hatten, den Frühjahrszug später begannen als Vögel aus trockeneren Gebieten. Eine Auswirkung von Umgebungsbedingungen außerhalb der Brutgebiete und/oder von der geographischen Breite auf spätere Stadien des Zugs konnte jedoch nicht festgestellt werden; später startende Individuen verbrachten weniger Tage auf dem Zug in die Brutgebiete. Obwohl schon früher vermutet wurde, dass sich beim Neuntöter die Bedingungen außerhalb der Brutgebiete eventuell auf Populationsfluktuationen auswirkten, konnten wir keinen Beweis für derartige „carry-over“-Effekte auf den Bruterfolg feststellen. Diese Studie unterstreicht das Potential, das bei der Untersuchung saisonaler Interaktionen bei Tieren mit Zugverhalten in der Kombination unterschiedlicher Ansätze liegt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amundson R, Austin AT, Schuur EAG, Yoo K, Matzek V, Kendall C, Uebersax A, Brenner D, Baisden WT (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Glob Biogeochem Cycles 17:1031. doi:10.1029/2002GB001903

    Article  Google Scholar 

  • Arizaga J, Maggini I, Hama F, Crespo A, Gargallo G (2013) Site-and species-specific fuel load of European-Afrotropical passerines on arrival at three oases of southeast Morocco during spring migration. Bird Study 60:11–21. doi:10.1080/00063657.2012.735222

    Article  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. doi:10.18637/jss.v067.i01

    Article  Google Scholar 

  • Bearhop S, Hilton GM, Votier SC, Waldron S (2004) Stable isotope ratios indicate that body condition in migrating passerines is influenced by winter habitat. Proc R Soc B-Biol Sci 271:S215–S218. doi:10.1098/rsbl.2003.0129

    Article  Google Scholar 

  • Berthold P (1996) Control of bird migration. Chapman & Hall, London

    Google Scholar 

  • BirdLife International (2004) Birds in Europe: population estimates, trends and conservation status. (BirdLife Conservation Series No. 12). BirdLife International, Cambridge, UK

    Google Scholar 

  • Blackburn E, Cresswell W (2015) Fine-scale habitat use during the non-breeding season suggests that winter habitat does not limit breeding populations of a declining long-distance Palearctic migrant. J Avian Biol 46:622–633. doi:10.1111/jav.00738

    Article  Google Scholar 

  • Blackburn E, Cresswell W (2016) High within-winter and annual survival rates in a declining Afro-Palaearctic migratory bird suggest that wintering conditions do not limit populations. Ibis 158:92–105. doi:10.1111/ibi.12319

    Article  Google Scholar 

  • Both C, Sanz JJ, Artemyev A, Blaauw B, Cowie RJ, Dekhuijzen A, Enemar A, Jarvinen A, Nyholm NEI, Potti J (2006) Pied flycatchers Ficedula hypoleuca travelling from Africa to breed in Europe: differential effects of winter and migration conditions on breeding date. Ardea 94:511–525

    Google Scholar 

  • Bridge ES, Ross JD, Contina AJ, Kelly JF (2015) Do molt-migrant songbirds optimize migration routes based on primary productivity? Behav Ecol. doi:10.1093/beheco/arv199 (arv199)

    Google Scholar 

  • Bridge ES, Thorup K, Bowlin MS, Chilson PB, Diehl RH, Fleron RW, Hartl P, Kays R, Kelly JF, Robinson WD, Wikelski M (2011) Technology on the move: recent and forthcoming innovations for tracking migratory birds. Bioscience 61:689–698. doi:10.1525/bio.2011.61.9.7

    Article  Google Scholar 

  • Brink AB, Eva HD (2009) Monitoring 25 years of land cover change dynamics in Africa: a sample based remote sensing approach. Appl Geogr 29:501–512. doi:10.1016/j.apgeog.2008.10.004

    Article  Google Scholar 

  • Bruderer B (2007) Notes on the moult of red-backed shrikes (Lanius collurio) in their non-breeding range. J Ornithol 148:557–561. doi:10.1007/s10336-007-0190-9

    Article  Google Scholar 

  • Bruderer B, Bruderer H (1993) Distribution and habitat preference of red-backed shrikes Lanius collurio in southern Africa. Ostrich 64:141–147. doi:10.1080/00306525.1993.9632651

    Article  Google Scholar 

  • Bruderer B, Bruderer H (1994) Numbers of red-backed shrikes Lanius collurio in different habitats of South Africa. Bull Br Ornithol’ Club 114:192–202

    Google Scholar 

  • Craine JM, Elmore AJ, Aidar MPM, Bustamante M, Dawson TE, Hobbie EA, Kahmen A, Mack MC, McLauchlan KK, Michelsen A, Nardoto GB, Pardo LH, Penuelas J, Reich PB, Schuur EAG, Stock WD, Templer PH, Virginia RA, Welker JM, Wright IJ (2009) Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol 183:980–992. doi:10.1111/j.1469-8137.2009.02917.x

    Article  CAS  PubMed  Google Scholar 

  • Drake A, Rock C, Quinlan SP, Green DJ (2013) Carry-over effects of winter habitat vary with age and sex in yellow warblers Setophaga petechia. J Avian Biol 44:321–330. doi:10.1111/j.1600-048X.2013.05828.x

    Article  Google Scholar 

  • Ekstrom PA (2004) An advance in geolocation by light. Mem Natl Inst Polar Res Spec Issue 58:210–226

    Google Scholar 

  • Emmenegger T, Hahn S, Bauer S (2014) Individual migration timing of common nightingales is tuned with vegetation and prey phenology at breeding sites. BMC ecol 14:9. doi:10.1186/1472-6785-14-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Fox J (2010) Geolocator manual. Version 8. British Antarctic Survey, Cambridge

  • Fraser KC, Silverio C, Kramer P, Mickle N, Aeppli R, Stutchbury BJM (2013) A trans-hemispheric migratory songbird does not advance spring schedules or increase migration rate in response to record-setting temperatures at breeding sites. PLos One 8:e64587. doi:10.1371/journal.pone.0064587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser KC, Stutchbury BJM, Silverio C, Kramer PM, Barrow J, Newstead D, Mickle N, Cousens BF, Lee JC, Morrison DM, Shaheen T, Mammenga P, Applegate K, Tautin J (2012) Continent-wide tracking to determine migratory connectivity and tropical habitat associations of a declining aerial insectivore. Proc R Soc B-Biol Sci 279:4901–4906. doi:10.1098/rspb.2012.2207

    Article  Google Scholar 

  • Fretwell SD (1972) Populations in a seasonal environment. Princeton University, New Jersey

    Google Scholar 

  • Fudickar AM, Wikelski M, Partecke J (2012) Tracking migratory songbirds: accuracy of light-level loggers (geolocators) in forest habitats. Methods Ecol Evolut 3:47–52. doi:10.1111/j.2041-210X.2011.00136.x

    Article  Google Scholar 

  • Geertsma M, van Berkel H, Esselink H (2000) Are high fitness values sufficient to maintain a dutch population of the red-backed shrike (Lanius collurio)? Ring 22:79–88

    Google Scholar 

  • Gienapp P, Bregnballe T (2012) Fitness consequences of timing of migration and breeding in cormorants. PLoS one 7:e46165. doi:10.1371/journal.pone.0046165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Prieto AM, Hobson KA (2013) Environmental conditions on wintering grounds and during migration influence spring nutritional condition and arrival phenology of Neotropical migrants at a northern stopover site. J Ornithol 154:1067–1078. doi:10.1007/s10336-013-0975-y

    Article  Google Scholar 

  • Gordo O, Brotons L, Ferrer X, Comas P (2005) Do changes in climate patterns in wintering areas affect the timing of the spring arrival of trans-Saharan migrant birds? Glob Change Biol 11:12–21. doi:10.1111/j.1365-2486.2004.00875.x

    Article  Google Scholar 

  • Greenberg R, Marra PP (2005) Birds of two worlds: the ecology and evolution of migration. The John Hopkins University, Baltimore

    Google Scholar 

  • Gwinner E (1996) Circannual clocks in avian reproduction and migration. Ibis 138:47–63. doi:10.1111/j.1474-919X.1996.tb04312.x

    Article  Google Scholar 

  • Harrison XA, Blount JD, Inger R, Norris DR, Bearhop S (2011) Carry-over effects as drivers of fitness differences in animals. J Anim Ecol 80:4–18. doi:10.1111/j.1365-2656.2010.01740.x

    Article  PubMed  Google Scholar 

  • Heldbjerg H, Fox T (2008) Long-term population declines in Danish trans-Saharan migrant birds. Bird Study 55:267–279. doi:10.1080/00063650809461532

    Article  Google Scholar 

  • Herremans M (1997) Habitat segregation of male and female red-backed shrikes Lanius collurio and lesser grey shrikes Lanius minor in the Kalahari basin Botswana. J Avian Biol 28:240–248. doi:10.2307/3676975

    Article  Google Scholar 

  • Hill RD, Braun MJ (2001) Geolocation by light level - the next step: latitude. In: Sibert JR, Nielsen J (eds) Electronic tagging and tracking in marine fisheries. Kluwer Academic Publishers, Dordrecht, pp 315–330

    Chapter  Google Scholar 

  • Hobson KA (2005) Stable isotopes and the determination of avian migratory connectivity and seasonal interactions. Auk 122:1037–1048. doi:10.1642/0004-8038(2005)122[1037:siatdo]2.0.co;2

    Article  Google Scholar 

  • Hobson KA, Clark RG (1992) Assessing avian diets using stable isotopes I: turnover of C-13 in tissues. Condor 94:181–188. doi:10.2307/1368807

    Article  Google Scholar 

  • Jakober H, Stauber W (1987) Zur Populationsdynamik des Neuntöters (Lanius collurio). Beih Veröff Naturschutz Landschspfl Bad-Württ 48:71–78

    Google Scholar 

  • Jakober H, Stauber W, Bairlein F, Voss M (2007) Analysis of stable isotopes in feathers of Red-backed Shrikes (Lanius collurio): no evidence for different wintering habitats of males and females. J Ornithol 148:129–131. doi:10.1007/s10336-006-0110-4

    Article  Google Scholar 

  • Jenni-Eiermann S, Almasi B, Maggini I, Salewski V, Bruderer B, Liechti F, Jenni L (2011) Numbers, foraging and refuelling of passerine migrants at a stopover site in the western Sahara: diverse strategies to cross a desert. J Ornithol 152:113–128. doi:10.1007/s10336-010-0572-2

    Article  Google Scholar 

  • Kays R, Crofoot MC, Jetz W, Wikelski M (2015) Terrestrial animal tracking as an eye on life and planet. Science 348:aaa2478. doi:10.1126/science.aaa2478

    Article  Google Scholar 

  • Kelly JF (2000) Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Can J Zool-Rev Canadienne Zool 78:1–27. doi:10.1139/cjz-78-1-1

    Article  Google Scholar 

  • Kirby JS, Stattersfield AJ, Butchart SHM, Evans MI, Grimmett RFA, Jones VR, O’Sullivan J, Tucker GM, Newton I (2008) Key conservation issues for migratory land- and waterbird species on the world’s major flyways. Bird Conserv Int 18:S49–S73. doi:10.1017/s0959270908000439

    Article  Google Scholar 

  • Kokko H (1999) Competition for early arrival in migratory birds. J Anim Ecol 68:940–950. doi:10.1046/j.1365-2656.1999.00343.x

    Article  Google Scholar 

  • Korner-Nievergelt F, Jenni L, Tøttrup AP, Pasinelli G (2012) Departure directions, migratory timing and non-breeding distribution of the Red-backed Shrike Lanius collurio: do ring re-encounters and light-based geolocator data tell the same story? Ring Migr 27:83–93. doi:10.1080/03078698.2012.748508

    Article  Google Scholar 

  • Lisovski S, Hewson CM, Klaassen RHG, Korner-Nievergelt F, Kristensen MW, Hahn S (2012) Geolocation by light: accuracy and precision affected by environmental factors. Methods Ecol Evol 3:603–612. doi:10.1111/j.2041-210X.2012.00185.x

    Article  Google Scholar 

  • Macdonald CA, Fraser KC, Gilchrist HG, Kyser TK, Fox JW, Love OP (2012) Strong migratory connectivity in a declining arctic passerine. Anim Migr 1:23–30. doi:10.2478/ami-2012-0003

    Google Scholar 

  • Maggini I, Hama F, Robson D, Rguibi Idrissi H, Bairlein F, Gargallo G (2015) Foraging behavior of three species of songbirds during stopover in southeastern Morocco during spring migration. J Field Ornithol 86:266–276. doi:10.1111/jofo.12115

    Article  Google Scholar 

  • Marra PP, Francis CM, Mulvihill RS, Moore FR (2005) The influence of climate on the timing and rate of spring bird migration. Oecologia 142:307–315. doi:10.1007/s00442-004-1725-x

    Article  PubMed  Google Scholar 

  • Marra PP, Hobson KA, Holmes RT (1998) Linking winter and summer events in a migratory bird by using stable-carbon isotopes. Science 282:1884–1886. doi:10.1126/science.282.5395.1884

    Article  CAS  PubMed  Google Scholar 

  • Massa R, Bottoni L, Fornasari L (1993) Site fidelity and population structure of the red-backed shrike Lanius collurio in northern Italy. Ring Migr 14:129–132. doi:10.1080/03078698.1993.9674055

    Article  Google Scholar 

  • McKellar AE, Marra PP, Hannon SJ, Studds CE, Ratcliffe LM (2013) Winter rainfall predicts phenology in widely separated populations of a migrant songbird. Oecologia 172:595–605. doi:10.1007/s00442-012-2520-8

    Article  PubMed  Google Scholar 

  • McKinnon EA, Fraser KC, Stutchbury BJM (2013) New discoveries in landbird migration using geolocators, and a flight plan for the future. Auk 130:211–222. doi:10.1525/auk.2013.12226

    Article  Google Scholar 

  • McNamara JM, Welham RK, Houston AI (1998) The timing of migration within the context of an annual routine. J Avian Biol 29:416–423

    Article  Google Scholar 

  • Müller C (2009) Climate change impact on Sub-Saharan Africa: an overview and analysis of scenarios and models. Discussion Paper. German Development Institute/Deutsches Institut für Entwicklungspolitik (DIE), vol 3. ISBN 978-3-88985-451-3

  • Norris DR, Marra PP (2007) Seasonal interactions, habitat quality, and population dynamics in migratory birds. Condor 109:535–547. doi:10.1650/8350.1

    Article  Google Scholar 

  • Norris DR, Marra PP, Kyser TK, Sherry TW, Ratcliffe LM (2004) Tropical winter habitat limits reproductive success on the temperate breeding grounds in a migratory bird. Proc R Soc B-Biol Sci 271:59–64. doi:10.1098/rspb.2003.2569

    Article  Google Scholar 

  • Norris DR, Wunder MB, Boulet M (2006) Perspectives on migratory connectivity. Ornithol Monogr 61:79–88

    Article  Google Scholar 

  • Ockendon N, Leech D, Pearce-Higgins JW (2013) Climatic effects on breeding grounds are more important drivers of breeding phenology in migrant birds than carry-over effects from wintering grounds. Biol Lett 9. doi:10.1098/rsbl.2013.0669

    Google Scholar 

  • Ostrom NE, Macko SA, Deibel D, Thompson RJ (1997) Seasonal variation in the stable carbon and nitrogen isotope biogeochemistry of a coastal cold ocean environment. Geochim Cosmochim Acta 61:2929–2942. doi:10.1016/S0016-7037(97)00131-2

    Article  CAS  Google Scholar 

  • Pardo LH, Nadelhoffer KJ (2010) Using nitrogen isotope ratios to assess terrestrial ecosystems at regional and global scales. In: West JB, Bowen GJ, Dawson TE, Tu KP (eds) Isoscapes: understanding movements, pattern and process on Earth through isotope mapping. Springer, New York, pp 221–250

    Chapter  Google Scholar 

  • Pasinelli G, Schaub M, Häfliger G, Frey M, Jakober H, Muller M, Stauber W, Tryjanowski P, Zollinger JL, Jenni L (2011) Impact of density and environmental factors on population fluctuations in a migratory passerine. J Anim Ecol 80:225–234. doi:10.1111/j.1365-2656.2010.01754.x

    Article  PubMed  Google Scholar 

  • Pedersen PE, Petersen TL, Jørgensen PS, Tøttrup AP (2011) The breeding population of Red-backed Shrike Lanius collurio in Gribskov. Dan Ornitol Foren Tidsskr 105:179–182

    Google Scholar 

  • R Development Core Team (2015) R: a language and environment for Statistical Computing https://www.r-project.org/. Accessed 14 Aug 2015

  • Robbins CS, Sauer JR, Greenberg RS, Droege S (1989) Population declines in North-American birds that migrate to the Neotropics. Proc Natl Acad Sci USA 86:7658–7662. doi:10.1073/pnas.86.19.7658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rockwell SM, Bocetti CI, Marra PP (2012) Carry-over effects of winter climate on spring arrival date and reproductive success in an endangered migratory bird, Kirtland’s warbler (Setophaga kirtlandii). Auk 129:744–752. doi:10.1525/auk.2012.12003

    Article  Google Scholar 

  • RStudio Team (2015) R Studio: Integrated development environment for R, 0.99.486 ed., Boston, MA http://www.rstudio.com/. Accessed 7 Oct 2015

  • Saino N, Rubolini D, Jonzen N, Ergon T, Montemaggiori A, Stenseth NC, Spina F (2007) Temperature and rainfall anomalies in Africa predict timing of spring migration in trans-Saharan migratory birds. Clim Res 35:123–134. doi:10.3354/cr00719

    Article  Google Scholar 

  • Sanderson FJ, Donald PF, Pain DJ, Burfield IJ, van Bommel FPJ (2006) Long-term population declines in Afro-Palearctic migrant birds. Biol Conserv 131:93–105. doi:10.1016/j.biocon.2006.02.008

    Article  Google Scholar 

  • Schaub M, Jakober H, Stauber W (2011) Demographic response to environmental variation in breeding, stopover and non-breeding areas in a migratory passerine. Oecologia 167:445–459. doi:10.1007/s00442-011-1999-8

    Article  PubMed  Google Scholar 

  • Sillett TS, Holmes RT, Sherry TW (2000) Impacts of a global climate cycle on population dynamics of a migratory songbird. Science 288:2040–2042. doi:10.1126/science.288.5473.2040

    Article  CAS  PubMed  Google Scholar 

  • Šimek J (2001) Patterns of breeding fidelity in the Red-backed Shrike (Lanius collurio). Ornis Fenn 78:61–71

    Google Scholar 

  • Smith BN, Epstein S (1971) Two categories of 13C/12C ratios for higher plants. Plant Physiol 47:380–384. doi:10.1104/pp.47.3.380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JAM, Reitsma LR, Marra PP (2010) Moisture as a determinant of habitat quality for a nonbreeding Neotropical migratory songbird. Ecology 91:2874–2882. doi:10.1890/09-2212.1

    Article  PubMed  Google Scholar 

  • Snow DW, Perrins CM (1998) The birds of the Western Palearctic, vol 2. Oxford University, New York

    Google Scholar 

  • Streby HM, Kramer GR, Peterson SM, Lehman JA, Buehler DA, Andersen DE (2014) Tornadic storm avoidance behavior in breeding songbirds. Curr Biol 25:1–5. doi:10.1016/j.cub.2014.10.079

    Article  Google Scholar 

  • Studds CE, Marra PP (2005) Nonbreeding habitat occupancy and population processes: an upgrade experiment with a migratory bird. Ecology 86:2380–2385. doi:10.1890/04-1145

    Article  Google Scholar 

  • Stutchbury BJM, Tarof SA, Done T, Gow E, Kramer PM, Tautin J, Fox JW, Afanasyev V (2009) Tracking Long-Distance Songbird Migration by Using Geolocators. Science 323:896–896. doi:10.1126/science.1166664

    Article  CAS  PubMed  Google Scholar 

  • Svensson L (1992) Identification Guide to European Passerines. Märstatryck, Stockholm

    Google Scholar 

  • Tonra CM, Marra PP, Holberton RL (2011) Migration phenology and winter habitat quality are related to circulating androgen in a long-distance migratory bird. J Avian Biol 42:397–404. doi:10.1111/j.1600-048X.2011.05333.x

    Article  Google Scholar 

  • Tøttrup AP, Klaassen RH, Strandberg R, Thorup K, Kristensen MW, Jørgensen PS, Fox J, Afanasyev V, Rahbek C, Alerstam T (2012a) The annual cycle of a trans-equatorial Eurasian-African passerine migrant: different spatio-temporal strategies for autumn and spring migration. Proc R Soc B: Biol Sci 279:1008–1016. doi:10.1098/rspb.2011.1323

    Article  Google Scholar 

  • Tøttrup AP, Klaassen RHG, Kristensen MW, Strandberg R, Vardanis Y, Lindstrom A, Rahbek C, Alerstam T, Thorup K (2012b) Drought in Africa caused delayed arrival of European Songbirds. Science 338:1307–1307. doi:10.1126/science.1227548

    Article  PubMed  Google Scholar 

  • Tøttrup AP, Rainio K, Coppack T, Lehikoinen E, Rahbek C, Thorup K (2010) Local temperature fine-tunes the timing of spring migration in birds. Integr Comp Biol 50:293–304. doi:10.1093/icb/icq028

    Article  PubMed  Google Scholar 

  • Tøttrup AP, Thorup K, Rainio K, Yosef R, Lehikoinen E, Rahbek C (2008) Avian migrants adjust migration in response to environmental conditions en route. Biol Lett 4:685–688. doi:10.1098/rsbl.2008.0290

    Article  PubMed  PubMed Central  Google Scholar 

  • Tryjanowski P, Golawski A, Kuzniak S, Mokwa T, Antczak M (2007) Disperse or stay?exceptionally high breeding-site infidelity in the Red-backed Shrike Lanius collurio. Ardea 95:316–320. doi:10.5253/078.095.0214

    Article  Google Scholar 

  • Vickery JA, Ewing SR, Smith KW, Pain DJ, Bairlein F, Skorpilowá J, Gregory RD (2014) The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis 156:1–22. doi:10.1111/ibi.12118

    Article  Google Scholar 

  • Woodworth BK, Newman AE, Turbek SP, Dossman BC, Hobson KA, Wassenaar LI, Mitchell GW, Wheelwright NT, Norris DR (2016) Differential migration and the link between winter latitude, timing of migration, and breeding in a songbird. Oecologia 181:413–422. doi:10.1007/s00442-015-3527-8

    Article  PubMed  Google Scholar 

  • Yohannes E, Lee R, Popenko V, Bauchinger U (2012) Bone collagen and muscle delta C-13 in relation to the timing of the migration of Garden Warblers Sylvia borin during return migration from Africa. J Ornithol 153:783–791. doi:10.1007/s10336-011-0794-y

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14. doi:10.1111/j.2041-210X.2009.00001.x

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Per Ekberg Pedersen, Troels Leuenhagen Petersen, Peter Søgaard Jørgensen, and Daniel Palm Eskildsen for field assistance; Kristen Feige, April Vuletich and the staff at QFIR for lab assistance; Kasper Thorup for advice on data analyses; reviewers for valuable comments that helped improve this manuscript; the Frimodt-Heineke Foundation, the Bodil Pedersen Foundation, the Augustinus Foundation, the Oticon Foundation and Clément’s scholarship for financial support; L.P. and A.P.T acknowledge the Aage V Jensen Foundation as well as the Danish National Research Foundation for supporting the Center for Macroecology, Evolution and Climate (Grant No. DNRF96). Capture and sampling methods carried out was approved by the Copenhagen Bird Ringing Center with permission from the Danish Nature Agency (J.nr. SN 302-009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lykke Pedersen.

Additional information

Communicated by F. Bairlein.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedersen, L., Fraser, K.C., Kyser, T.K. et al. Combining direct and indirect tracking techniques to assess the impact of sub-Saharan conditions on cross-continental songbird migration. J Ornithol 157, 1037–1047 (2016). https://doi.org/10.1007/s10336-016-1360-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-016-1360-4

Keywords

Navigation