Skip to main content
Log in

Patterns of nest attendance by female Greater Prairie-Chickens (Tympanuchus cupido) in northcentral Kansas

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Nest attendance behavior is a critical component of avian ecology that influences nest survival and population productivity. Birds that provide uniparental care during incubation and brood-rearing must balance the benefit of reproductive success with the costs of physiological needs and predation risk. We used miniature nest cameras to record 5904 h of video footage at 33 nests of Greater Prairie-Chickens (Tympanuchus cupido) during 2010 and 2011 in northcentral Kansas. We quantified the timing and duration of incubation bouts to address alternative hypotheses about physiological requirements and predation risk as drivers of incubation behavior. We also identified nest predators and determined timing of predation events, and tested for effects of nest attendance and monitoring technique on nest survival (video vs. telemetry). Female prairie chickens exhibited high incubation constancy per day (~95 %) and typically took two ~40-min recesses per day: one after sunrise and one before sunset. Mesocarnivores were responsible for 75 % (18 of 24) of nest losses, and most nest predation events occurred during crepuscular or overnight hours. Controlled comparisons provided no evidence that video surveillance attracted predators to nests. Variation in nest attendance had a minimal effect on nest survival compared to height of vegetative cover at the nest site. Timing of recesses did not indicate avoidance of predator activity in our study system. The bimodal pattern of incubation breaks observed in most grouse species is likely driven by physiological requirements of the female rather than predation pressure. Female Greater Prairie-Chickens appear to prioritize their metabolic needs and future reproductive potential over current nest survival.

Zusammenfassung

Muster der Nestbewachung bei Präriehuhn-Weibchen Tympanuchus cupido in Nordzentral-Kansas Nestbewachungsverhalten ist ein entscheidender Bestandteil der Ökologie von Vögeln, welcher Einfluss auf Nesterfolg und die Produktivität einer Population hat. Vogelarten, bei denen sich nur ein Elternteil um Bebrütung und Jungenaufzucht kümmert, müssen den Gewinn durch reproduktiven Erfolg gegen die Kosten physiologischer Ansprüche und des Prädationsrisikos abwägen. Mithilfe von Miniatur-Nestkameras filmten wir in den Jahren 2010 und 2011 5.904 Stunden Videomaterial an 33 Nestern von Präriehühnern (Tympanuchus cupido) in Nordzentral-Kansas. Wir bestimmten Zeitpunkt und Dauer der Bebrütungsphasen, um alternative Hypothesen zu physiologischen Bedürfnissen und Prädationsrisiko als den treibenden Faktoren für das Brutverhalten anzusprechen. Außerdem ermittelten wir die Nesträuber sowie den Zeitpunkt der Prädationsereignisse und überprüften den Einfluss von Nestbewachung und Überwachungstechnik (Video beziehungsweise Telemetrie) auf die Erfolgsraten der Nester. Präriehuhn-Weibchen wiesen eine hohe Brutkonstanz am Tag auf (etwa 95 %), und machten typischerweise zwei etwa 40-minütige Brutpausen: eine nach Sonnenaufgang und eine vor Sonnenuntergang. Mesocarnivoren waren für 75 % (18 von 24) der Nestverluste verantwortlich, und die meisten Prädationsereignisse fanden zur Dämmerung oder während der Nachstunden statt. Kontrollvergleiche ergaben keine Hinweise darauf, dass durch die Videoüberwachung Prädatoren zu den Nestern gelockt wurden. Die Variation bei der Nestbewachung hatte, verglichen mit der Vegetationshöhe am Neststandort, nur einen minimalen Effekt auf den Nesterfolg. Der Zeitpunkt der Brutpausen deutete in unserem Untersuchungssystem nicht auf Vermeidung von Prädatorenaktivität. Das bimodale Muster der Brutpausen, wie man es bei den meisten Raufußhühnern beobachten kann, wird vermutlich eher von physiologischen Bedürfnissen des Weibchens bestimmt als durch den Prädationsdruck. Präriehuhn-Weibchen scheinen somit ihrem Stoffwechselbedarf und zukünftigem Fortpflanzungspotenzial mehr Bedeutung einzuräumen als dem gegenwärtigen Nesterfolg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Afton AD, Paulus SL (1992) Incubation and brood care. In: Batt BDJ, Afton AD, Anderson MG, Ankney CD, Johnson DH, Kadlec JA, Krapu GL (eds) Ecology and management of breeding waterfowl. University of Minnesota Press, Minneapolis, pp 62–108

    Google Scholar 

  • Arnold TW (2010) Uninformative parameters and model selection using Akaike’s Information Criterion. J Wildl Manag 74:1175–1178

    Article  Google Scholar 

  • Ashby KR (1972) Patterns of daily activity in mammals. Mamm Rev 1:171–185

    Article  Google Scholar 

  • Benson TJ, Brown JD, Bednarz JC (2010) Identifying predators clarifies predictors of nest success in a temperate passerine. J Anim Ecol 79:225–234

    Article  PubMed  Google Scholar 

  • Beyer HL (2004) Hawth’s Analysis Tools for ArcGIS. http://www.spatialecology.com/htools

  • BirdLife International (2014) Species factsheet: Tympanuchus cupido. IUCN Red List for Birds. http://www.birdlife.org. Accessed 20 Sep 2014

  • Burnam JS, Turner G, Ellis-Felege SN, Palmer WE, Sisson DC, Carroll JP (2012) Patterns of incubation behavior in Northern Bobwhites. Stud Avian Biol 43:77–88

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York, pp 1–488

    Google Scholar 

  • Cartar RV, Montgomerie RD (1985) The influence of weather on incubation scheduling of the White-rumped Sandpiper (Calidris fuscicollis): a uniparental incubator in a cold environment. Behavior 95:261–289

    Article  Google Scholar 

  • Cartar RV, Montgomerie RD (1987) Day-to-day variation in nest attentiveness of White-rumped Sandpipers. Condor 89:252–260

    Article  Google Scholar 

  • Carter AW, Hopkins WA, Moore IT, DuRant SE (2014) Influence of incubation recess patterns on incubation period and hatchling traits in Wood Ducks Aix sponsa. J Avian Biol 45:273–279

    Article  Google Scholar 

  • Caudill D, Guttery MR, Bibles B, Messmer TA, Caudill G, Leone E, Dahlgren DK, Chi R (2014) Effects of climatic variation and reproductive trade-offs vary by measure of reproductive effort in Greater Sage-Grouse. Ecosphere 5:art154

  • Coates PS, Delehanty DJ (2008) Effects of environmental factors on incubation patterns of Greater Sage-Grouse. Condor 110:627–638

    Article  Google Scholar 

  • Conway CJ, Martin TE (2000) Evolution of passerine incubation behavior: influence of food, temperature, and nest predation. Evolution 54:670–685

    Article  CAS  PubMed  Google Scholar 

  • Davis SK, Holmes TG (2012) Sprague’s Pipit incubation behavior. Stud Avian Biol 43:67–76

    Google Scholar 

  • Deeming DC (2002) Behaviour patterns during incubation. In: Deeming DC (ed) Avian incubation: behaviour, environment, and evolution. Oxford University Press, New York, pp 63–87

    Google Scholar 

  • Dinsmore SJ, White GC, Knopf FL (2002) Advanced techniques for modeling avian nest survival. Ecology 83:3476–3488

    Article  Google Scholar 

  • Drent R (1975) Incubation. In: Farner DS, King JR (eds) Avian biology, vol 5., Academic PressNew York, New York, pp 333–420

    Chapter  Google Scholar 

  • Ellis-Felege SN, Carroll JP (2012) Gamebirds and nest cameras: present and future. Stud Avian Biol 43:35–46

    Google Scholar 

  • Erikstad KE (1986) Relationship between weather, body condition and incubation rhythm in Willow Grouse. Cinclus 9:7–12

    Google Scholar 

  • Fields TL, White GC, Gilbert WC, Rodgers RD (2006) Nest and brood survival of Lesser Prairie-Chickens in west central Kansas. J Wildl Manag 70:931–938

    Article  Google Scholar 

  • Flanders-Wanner BL, White GC, McDaniel LL (2004) Weather and prairie grouse: dealing with effects beyond our control. Wildl Soc Bull 32:22–34

    Article  Google Scholar 

  • Ghalambor CK, Martin TE (2000) Parental investment strategies in two species of nuthatch vary with stage-specific predation risk and reproductive effort. Anim Behav 60:263–267

    Article  PubMed  Google Scholar 

  • Ghalambor CK, Martin TE (2002) Comparative manipulation of predation risk in incubating birds reveals variability in the plasticity of responses. Behav Ecol 13:101–108

    Article  Google Scholar 

  • Gibson D, Blomberg EJ, Atamian MT, Sedinger JD (2015) Observer effects strongly influence estimates of daily nest survival probability but do not substantially increase rates of nest failure in Greater Sage-Grouse. Auk Ornithol Adv 132:397–407

    Google Scholar 

  • Giesen KM, Braun CE (1979) Nesting behavior of female White-tailed Ptarmigan in Colorado. Condor 81:215–217

    Article  Google Scholar 

  • Gowaty PA, Hubbell SP (2009) Reproductive decisions under ecological constraints: it’s about time. Proc Natl Acad Sci USA 106:10017–10024

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamerstrom FN Jr., Hamerstrom F (1973) The prairie chicken in Wisconsin—highlights of a 22-year study of counts, behavior, movements, turnover, and habitat. Technical Bulletin 64. Wisconsin Department of Natural Resources, Madison, Wisconsin, USA

  • Henderson FR, Brooks FW, Wood RE, Dahlgren RB (1967) Sexing of prairie grouse by crown feather patterning. J Wildl Manag 31:764–769

    Article  Google Scholar 

  • Hepp GR, Kennamer RA, Johnson MH (2006) Maternal effects in Wood Ducks: incubation temperature influences incubation period and neonate phenotype. Funct Ecol 20:308–314

    Article  Google Scholar 

  • Hovick TJ, Elmore RD, Allred BW, Fuhlendorf SD, Dahlgren DK (2014) Landscapes as a moderator of thermal extremes: a case study from an imperiled grouse. Ecosphere 5:art35

  • Johnson JA, Schroeder MA, Robb LA (2011) Greater Prairie-Chicken (Tympanuchus cupido). In: Poole A (ed) The birds of North America online. Cornell Lab of Ornithology, Ithaca

    Google Scholar 

  • Keppie DM, Herzog PW (1978) Nest site characteristics and nest success of Spruce Grouse. J Wildl Manag 42:628–632

    Article  Google Scholar 

  • Laake J, Rexstad E (2008) RMark—an alternative approach to building linear models in MARK. In: Cooch E, White GC (eds) Program MARK: a gentle introduction, pp C1–C113

  • MacCluskie MC, Sedinger JS (1999) Incubation behavior of Northern Shovelers in the subarctic: a contrast to the prairies. Condor 101:417–421

    Article  Google Scholar 

  • Martin TE (2002) A new view of avian life-history evolution tested on an incubation paradox. Proc R Soc Lond B 269:309–316

    Article  Google Scholar 

  • Matthews TW, Tyre AJ, Taylor JS, Lusk JJ, Powell LA (2013) Greater Prairie-Chicken nest success and habitat selection in southeastern Nebraska. J Wildl Manag 77:1202–1212

    Article  Google Scholar 

  • Maxson SJ (1977) Activity patterns of female Ruffed Grouse during the breeding season. Wilson Bulletin 89:439–455

    Google Scholar 

  • McCourt KH, Boag DA, Keppie DM (1973) Female Spruce Grouse activities during laying and incubation. Auk 90:619–623

    Article  Google Scholar 

  • McNew LB, Gregory AJ, Wisely SM, Sandercock BK (2009) Estimating the stage of incubation for nests of Greater Prairie-Chickens using egg flotation: a float curve for grousers. Grouse News 38:12–14

    Google Scholar 

  • McNew LB, Gregory AJ, Wisely SM, Sandercock BK (2011a) Human-mediated selection of life-history traits of Greater Prairie-Chickens. Stud Avian Biol 39:255–266

    Google Scholar 

  • McNew LB, Gregory AJ, Wisely SM, Sandercock BK (2011b) Reproductive biology of a southern population of Greater Prairie-Chickens. Stud Avian Biol 39:209–221

    Google Scholar 

  • McNew LB, Gregory AJ, Wisely SM, Sandercock BK (2012) Demography of Greater Prairie-Chickens: regional variation in vital rates, sensitivity values, and population dynamics. J Wildl Manag 76:987–1000

    Article  Google Scholar 

  • McNew LB, Hunt LM, Gregory AJ, Wisely SM, Sandercock BK (2014) Effects of wind energy development on nesting ecology of Greater Prairie-Chickens in fragmented grasslands. Conserv Biol 28:1089–1099

    Article  PubMed  PubMed Central  Google Scholar 

  • McNew LB, Winder VL, Pitman JC, Sandercock BK (2015) Alternative rangeland management strategies and the nesting ecology of Greater Prairie-Chickens. Rangel Ecol Manag 68:298–304

    Article  Google Scholar 

  • Nooker JK, Sandercock BK (2008) Phenotypic correlates and survival consequences of male mating success in lek-mating Greater Prairie-Chickens (Tympanuchus cupido). Behav Ecol Sociobiol 62:1377–1388

    Article  Google Scholar 

  • Pietz PJ, Granfors DA, Ribic CA (2012) Knowledge gained from video-monitoring grassland passerine nests. Stud Avian Biol 43:3–22

    Article  Google Scholar 

  • Poiani KA, Merrill MD, Chapman KA (2001) Identifying conservation-priority areas in a fragmented Minnesota landscape based on the umbrella species concept and selection of large patches of natural vegetation. Conserv Biol 15:513–522

    Article  Google Scholar 

  • Powell LA (2007) Approximating variance of demographic parameters using the delta method: a reference for avian biologists. Condor 109:949–954

    Article  Google Scholar 

  • Powell LA, Giovanni MD, Groepper S, Reineke ML, Schacht WH (2012) Attendance patterns and survival of Western Meadowlark nests. Stud Avian Biol 43:61–66

    Article  Google Scholar 

  • Pulliainen E (1971) Behaviour of a nesting Capercaillie (Tetrao urogallus) in northeastern Lapland. Annales Zoologica Fennica 8:456–462

    Google Scholar 

  • Reed A, Hughes RJ, Gauthier G (1995) Incubation behavior and body mass of female Greater Snow Geese. Condor 97:993–1001

    Article  Google Scholar 

  • Reidy JL, Thompson FR III (2012) Predator identity can explain nest predation patterns. Stud Avian Biol 43:135–148

    Google Scholar 

  • Richardson TW, Gardali T, Jenkins SH (2009) Review and meta-analysis of camera effects on avian nest success. J Wildl Manag 73:287–293

    Article  Google Scholar 

  • Robel RJ, Briggs JN, Dayton AD, Hulbert LC (1970) Relationship between visual obstruction measurements and weight of grassland vegetation. J Rangel Manag 23:295–297

    Article  Google Scholar 

  • Samelius G, Alisauskas RT (2001) Deterring arctic fox predation: the role of parental nest attendance by Lesser Snow Geese. Can J Zool 79:861–866

    Article  Google Scholar 

  • Sandercock BK, Martin K, Hannon SJ (2005) Demographic consequences of age-structure in extreme environments: population models for arctic and alpine ptarmigan. Oecologia 146:13–24

    Article  PubMed  Google Scholar 

  • Sandercock BK, Alfaro-Barrios M, Casey AE, Johnson TN, Mong TW, Odom KJ, Strum KM, Winder VL (2015) Effects of grazing and prescribed fire on resource selection and nest survival of Upland Sandpipers in an experimental landscape. Lands Ecol 30:325–337

    Article  Google Scholar 

  • Schmidt JH, Taylor EJ, Rexstad EA (2005) Incubation behaviors and patterns of nest attendance in Common Goldeneyes in interior Alaska. Condor 107:167–172

    Article  Google Scholar 

  • Smith PA, Tulp IT, Schekkerman H, Gilchrist HG, Forbes MR (2012a) Shorebird incubation behavior and its influence on the risk of nest predation. Anim Behav 84:835–842

    Article  Google Scholar 

  • Smith PA, Dauncey SA, Gilchrist HG, Forbes MR (2012b) The influence of weather on shorebird incubation. Stud Avian Biol 43:89–104

    Google Scholar 

  • Steen JB, Pedersen HC, Erikstad KE, Hansen KB, Høydal K, Størdal A (1985) The significance of cock territories in Willow Ptarmigan. Ornis Scand 16:277–282

    Article  Google Scholar 

  • Summers RW, Willi J, Selvidge J (2009) Capercaillie Tetrao urogallus nest loss and attendance at Abernethy Forest, Scotland. Wildl Biol 15:237–319

    Article  Google Scholar 

  • Thompson SD, Raveling DG (1987) Incubation behavior of Emperor Geese compared with other geese: interactions of predation, body size, and energetics. Auk 104:707–716

    Google Scholar 

  • Thompson FR III, Ribic CA (2012) Conservation implications when the nest predators are known. Stud Avian Biol 43:23–34

    Google Scholar 

  • Tombre IM, Erikstad KE (1996) An experimental study of incubation effort in high-arctic Barnacle Geese. J Anim Ecol 65:325–331

    Article  Google Scholar 

  • Tulp I, Schekkerman H (2006) Time allocation between feeding and incubation in uniparental arctic-breeding shorebirds: energy reserves provide leeway in a tight schedule. J Avian Biol 37:207–218

    Article  Google Scholar 

  • Walsburg GE (1983) Avian ecological energetics. In: Farer DS, King JR, Parkes KC (eds) Avian Biology, Vol VII. Academic Press, New York, pp 161–220

  • Watson A (1972) The behavior of the ptarmigan. Br Birds 65:6–26

    Google Scholar 

  • Webb SL, Olson CV, Dzialak MR, Harju SM, Winstead JB, Lockman D (2012) Landscape features and weather influence nest survival of a ground-nesting bird of conservation concern, the Greater Sage-Grouse, in human-altered environments. Ecol Process 1:art4

  • White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46:S120–S139

    Article  Google Scholar 

  • Wiebe KL, Martin K (1997) Effects of predation, body condition and temperature on incubation of White-tailed Ptarmigan Lagopus leucura. Wildl Biol 3:219–227

    Google Scholar 

  • Wiebe KL, Martin K (2000) The use of incubation behavior to adjust avian reproductive costs after egg laying. Behav Ecol Sociobiol 48:463–470

    Article  Google Scholar 

  • Winder VL, McNew LB, Gregory AJ, Hunt LM, Wisely SM, Sandercock BK (2014) Effects of wind energy development on survival of female Greater Prairie-Chickens. J Appl Ecol 51:395–405

    Article  Google Scholar 

  • Wisdom MJ, Mills LS (1997) Sensitivity analysis to guide population recovery: prairie-chickens as an example. J Wildl Manag 61:302–312

    Article  Google Scholar 

  • Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc (B) 73:3–36

    Article  Google Scholar 

  • US Naval Observatory (2016) Astronomical Applications Department, Washington DC. http://aa.usno.navy.mil/

Download references

Acknowledgments

We thank the many field technicians who helped with data collection for our project and A. Ricketts for assistance with predator identification. We especially thank S. Richards, D. Weaver, L. Perry, and other landowners in Kansas for allowing us access to private property. All capture, marking, and tracking activities were performed under institutional animal care and use protocols approved by Kansas State University (IACUC protocol 2781) and state wildlife research permits (SC-082-2010, SC-011-2011). Research funding and equipment were provided by a consortium of federal and state wildlife agencies, conservation groups, and wind energy partners under the National Wind Coordinating Collaborative (NWCC) including the Department of Energy, National Renewable Energies Laboratory, U.S. Fish and Wildlife Service, Kansas Department of Wildlife, Parks, and Tourism, Kansas Cooperative Fish and Wildlife Research Unit, National Fish and Wildlife Foundation, Kansas and Oklahoma chapters of The Nature Conservancy, BP Alternative Energy, FPL Energy, Horizon Wind Energy, and Iberdrola Renewables.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia L. Winder.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Additional information

Communicated by C. G. Guglielmo.

Appendices

Appendix 1

Equipment used to video-monitor nests of Greater Prairie Chickens in northcentral Kansas, 2010 and 2011. AC alternating current, BNC Bayonet Neill-Concelman, DC direct current, DVR digital video recorder, LED light-emitting diode, RCA Radio Corporation of America, TRS tip, ring, sleeve.

Appendix 2

Predation attempts at Greater Prairie-Chicken nests monitored by video cameras in north central Kansas, 2010 and 2011.

Year

Time (24 h)

Nest age (days)a

Predatorb

Outcomec

2011

00:05

17

Coyote

Total clutch loss

2011

00:21

2

Skunk

Total clutch loss

2010

01:02

21

coyote

Total clutch loss

2011

01:22

0

Skunk

Total clutch loss

2010

01:41

23

Skunk

Total clutch loss

2011

02:39

14

Badger

Total clutch loss

2011

4:14

1

Opossum

Partial clutch loss

2011

04:48

14

Coyote

Total clutch loss

2011

05:23

10

Coyote

Total clutch loss

2011

05:33

4

Coyote

Total clutch loss

2011

9:51

14

Ground squirrel

Unsuccessful attempt

2011

10:26

3

Coyote

Total clutch loss

2011

12:47

17

Bullsnake

Total clutch loss

2011

15:29

7

Rattlesnake

Unsuccessful attempt

2011

18:41

9

Bullsnake

Total clutch loss

2010

18:49

13

Bullsnake

Total clutch loss

2010

20:02

18

Unknown mammal

Total clutch loss

2011

21:08

1

Coyote

Total clutch loss

2011

21:48

14

Bullsnake

Total clutch loss

2011

21:55

22

Coyote

Total clutch loss

2010

21:56

9

Bullsnake

Partial clutch loss

2010

22:02

19

Badger

Total clutch loss

2011

22:10

14

Coyote

Total clutch loss

2011

22:58

22

Skunk

Total clutch loss

  1. aNumber of days since female initiated incubation
  2. b Predators included: massasauga rattlesnake (Sistrurus catenatus), bullsnake (Pituophis catenifer), Virginia opossum (Didelphis virginiana), thirteen-lined ground squirrel (Ictidomys tridecemlineatus), coyote (Canis latrans), American badger (Taxidea taxus), striped skunk (Mephitis mephitis)
  3. cTotal clutch loss = predator completely or partially consumed a female or eggs from a nest that subsequently became inactive; partial clutch loss = predator consumed a portion of eggs from a nest that remained active following the predation event; unsuccessful attempt = predator unsuccessfully attempted to consume eggs

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winder, V.L., Herse, M.R., Hunt, L.M. et al. Patterns of nest attendance by female Greater Prairie-Chickens (Tympanuchus cupido) in northcentral Kansas. J Ornithol 157, 733–745 (2016). https://doi.org/10.1007/s10336-016-1330-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-016-1330-x

Keywords

Navigation