Skip to main content

Advertisement

Log in

Short-term response to the North Atlantic Oscillation but no long-term effects of climate change on the reproductive success of an alpine bird

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Deciphering the effects of climatic conditions on population dynamics is of major importance in understanding how organisms are likely to be affected by climate changes. Using data from broad-scale annual censuses between 1990 and 2007, we show that winter and summer North Atlantic Oscillations affect several breeding success indicators of the Black Grouse (Tetrao tetrix) in the French Alps. We did not find any trend in hen counts or breeding indexes over the study period. Surprisingly for a bird specialised in cold climates, we show that Black Grouse optimise their reproductive output for positive values of the winter NAO corresponding to the average NAO index of the last 30 years. Extreme NAO values lead to lower breeding success, indicating that the grouse may be more able to track trends in climate than an increase in the frequency of extreme years. Our result show that, at least from a short-term perspective, Black Grouse productivity is not threatened by a trend towards warmer climatic conditions in the Alps, but may be affected by an increased frequency of extreme years. We advocate the use of the NAO as a climate proxy rather than using heavily noised and biased local climate descriptors in studies focusing on the global response to climate over a large spatial scale.

Zusammenfassung

Die Folgen der Klimaverhältnisse auf die Populationsdynamik zu entschlüsseln ist von größter Wichtigkeit, um zu verstehen, wie sich Klimaveränderungen wahrscheinlich auf Organismen auswirken werden. Mittels Daten aus umfassenden jährlichen Zählungen zwischen 1990 und 2007 zeigen wir, dass Nordatlantische Oszillationen in Winter und Sommer mehrere Anzeiger von Bruterfolg bei Birkhühnern (Tetrao tetrix) in den französischen Alpen beeinflussen. Wir fanden keinen Trend in den Zahlen von Hühnern oder in Brutanzeigern während des Untersuchungszeitraums. Wir zeigen, dass Birkhühner ihre Fortpflanzungsleistung für positive Winter-NAOs (bezogen auf den durchschnittlichen NAO-Index der letzten 30 Jahre) optimieren, was für einen an ein kaltes Klima angepassten Vogel überraschend ist. Extreme NAOI-Werte führen zu niedrigerem Bruterfolg, was darauf hindeutet, dass Birkhühner besser in der Lage sein könnten, Klimatrends zu folgen, als eine Zunahme der Häufigkeit extremer Jahre zu bewältigen. Unsere Ergebnisse zeigen, dass zumindest aus kurzfristiger Sicht die Produktivität der Birkhühner nicht durch einen Trend zu wärmeren Klimaverhältnissen in den Alpen bedroht ist, jedoch durch eine erhöhte Häufigkeit extremer Jahre beeinträchtigt sein dürfte. Wir empfehlen, für Studien, die sich auf die großflächige, globale Antwort auf das Klima konzentrieren, die NAO als Klimamaß zu verwenden und nicht stark störanfällige und verzerrte lokale Klimadeskriptoren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Archaux F (2004) Breeding upwards when climate is becoming warmer: no bird response in the French Alps. Ibis 146:138–144

    Article  Google Scholar 

  • Ascencio E (1983) Aspects climatologiques des départements de la région Provence- Alpes-Côte d’Azur, Monographie no2. Ministère des Transports, Direction de la Météorologie

    Google Scholar 

  • Baines D, Wilson IA, Beeley G (1996) Timing of breeding in black grouse Tetrao tetrix and capercaillie Tetrao urogallus and distribution of insect food for the chicks. Ibis 138:181–187

    Article  Google Scholar 

  • Bates D, Sarkar D (2008) lme4: linear mixed-effects models using S4 classes. R package version 0.999375-28. http://lme4.r-forge.r-project.org/

  • Beniston M (2005) Mountain climates and climatic change: an overview of processes focusing on the European Alps. Pure Appl Geoph 162:1587–1606

    Article  Google Scholar 

  • Beniston M (2006) Mountain weather and climate: a general overview and a focus on climatic change in the Alps. Hydrobiol 562:3–16

    Article  Google Scholar 

  • Beniston M, Jungo P (2002) Shifts in the distributions of pressure, temperature and moisture and changes in the typical weather patterns in the alpine region in response to the behavior of the North Atlantic Oscillation. Theor Appl Clim 71:29–42

    Article  Google Scholar 

  • Beniston M, Diaz S, Bradley RW (1997) Climatic change at high elevation sites: an overview. Clim Change 36:233–251

    Article  Google Scholar 

  • Bernard-Laurent A (1994) Statut, evolution et facteurs limitant les populations de Tétras-lyre (Tetrao tetrix) en France: synthèse bibliographique. Gibier Faune Sauvage, Game Wild 11. Hors-série tome 1:205–239

    Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MH, White JSS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135

    Article  PubMed  Google Scholar 

  • Brockwell PJ, Davis RA (1991) Time series: theory and methods, 2nd edn. Springer, Heidelberg, p 584

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, Heidelberg

    Google Scholar 

  • Charmantier A, McCleery R, Cole LR, Perrins CM, Kruuk LEB, Sheldon BC (2008) Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320:800–803

    Article  CAS  PubMed  Google Scholar 

  • Chassagneux P, Deblaere JC, Thebaut E (1992) Atlas agro-climatique Rhône-Alpes. Météo-France et Chambre Régionale d’Agriculture Rhône, Alpes

    Google Scholar 

  • Chauchard S, Beilhe F, Denis N, Carcaillet C (2010) An increase in the upper tree-limit of silver fir (Abies alba Mill.) in the Alps since the mid-20th century: a land-use change phenomenon. Forest Ecol Manage 259:1406–1415

    Article  Google Scholar 

  • Choinière L, Gauthier G (1995) Energetics of reproduction in female and male greater snow geese. Oecologia 103:379–389

    Article  PubMed  Google Scholar 

  • Cotton PA (2003) Avian migration phenology and global climate change. Proc Natl Acad Sci USA 100:12219–12222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coulson T, Catchpole EA, Albon SD, Morgan BJT, Pemberton JM, Clutton-Brock TH, Crawley MJ, Grenfell BT (2001) Age, sex, density, winter weather, and population crashes in Soay sheep. Science 292:1528–1531

    Article  CAS  PubMed  Google Scholar 

  • Dickey MH, Gauthier G, Cadieux MC (2009) Climatic effects on the breeding phenology and reproductive success of an arctic-nesting goose species. Glob Change Biol 14:1973–1985

    Article  Google Scholar 

  • Eiberle K (1987) Influence de la température de l’air et des précipitations sur les tableaux de chasse des tétraonidés. Cahiers Ethol Appl 7:109–128

    Google Scholar 

  • Ellison LN, Bernard-Laurent A, Magnani Y, Gindre R, Corti R (1987) Le Tétras lyre Lyrurus tetrix. Dynamique des populations, chasse et biotope de reproduction dans les Alpes françaises. Résultats d’études et recommandations pratiques. Section Faune de Montagne. Office National de la Chasse

  • Erikstad KE, Spidsö TK (1982) The influence of weather on food intake, insect prey selection and feeding behaviour in willow grouse chicks in northern Norway. Ornis Scand 13:176–182

    Article  Google Scholar 

  • Folland C, Knight J, Linderholm HW, Fereday D, Ineson S, Hurrell JW (2009) The summer North Atlantic oscillation: past, present and future. J Clim 22:1082–1103

    Article  Google Scholar 

  • Gehrig-Fasel J, Guisan A, Zimmermann NE (2007) Tree line shifts in the Swiss Alps: climate change or land abandonment? J Veg Sci 18:571–582

    Article  Google Scholar 

  • Gienapp P, Teplitsky C, Alho JS, Mills JA, Merilä J (2008) Climate change and evolution: disentangling environmental and genetic responses. Mol Ecol 17:167–178

    Article  CAS  PubMed  Google Scholar 

  • Giorgi F, Hurrell JW, Marinucci MR (1997) Elevation dependency of the surface climate change signal: a model study. J Clim 10:288–296

    Article  Google Scholar 

  • Grosbois V, Thompson PM (2005) North Atlantic climate variation influences survival in adult fulmars. Oikos 109:273–290

    Article  Google Scholar 

  • Hallett TB, Coulson T, Pilkington JG, Clutton-Brock TH, Pemberton JM, Grenfell BT (2004) Why large-scale climate indices seem to predict ecological processes better than local weather. Nature 430:71–75

    Article  CAS  PubMed  Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269:676–679

    Article  CAS  PubMed  Google Scholar 

  • Hurrell JW (1996) Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature. Geophys Res Lett 23:665–668

    Article  Google Scholar 

  • Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic oscillation. Geophys Monogr Ser 134:1–35

    Google Scholar 

  • IPCC (2007) Climate change 2007: Synthesis report. Intergovernmental Panel on Climate Change, Paris

    Google Scholar 

  • Jiguet F, Gadot AS, Julliard R, Newson SE, Couvet D (2007) Climate envelope, life history traits and the resilience of birds facing global change. Global Change Biol 13:1672–1684

    Article  Google Scholar 

  • Jolly WM, Dobbertin M, Zimmermann NE, Reichstein M (2005) Divergent vegetation growth responses to the 2003 heat wave in the Swiss Alps. Geophys Res Lett 32:L18409

    Article  Google Scholar 

  • Jonzén N, Lindén A, Ergon T, Knudsen E, Vik JO, Rubolini D, Piacentini D, Brinch C, Spina F, Karlsson L, Stervander M, Andersson A, Waldenström J, Lehikoinen A, Edvardsen E, Solvang R, Stenseth NC (2006) Rapid advance of spring arrival dates in long-distance migratory birds. Science 312:1959–1961

    Article  PubMed  CAS  Google Scholar 

  • Klaus S (2007) A33-year study of hazel grouse Bonasa bonasia in theBohemian Forest, Sumava, Czech Republic: effects of weather on density in autumn. Wildl Biol 13(Suppl 1):105–108

    Article  Google Scholar 

  • Krajick K (2001) Arctic life, on thin ice. Science 291:424–425

    Article  CAS  PubMed  Google Scholar 

  • Krajick K (2004) All downhill from here? Science 303:1600–1602

    Article  CAS  PubMed  Google Scholar 

  • Kurki S, Nikula A, Helle P, Lindén H (2000) Landscape fragmentation and forest composition effects on grouse breeding success in boreal forest. Ecology 81:1985–1997

    Google Scholar 

  • Legendre L, Legendre P (1984) Ecologie numérique: 2ème edition revue et augmentée. 2. La structure des données écologiques, Masson, Paris

    Google Scholar 

  • Leonard P (1992) Méthode de dénombrement des galliformes de montagne en été avec chiens d’arrêt et présentation ds résultats. Bull Mens ONCFS 172: fiche technique no 76

  • Lewis S, Elston DA, Daunt F, Cheney B, Thompson PM (2009) Effects of extrinsic and intrinsic factors on breeding success in a long lived seabird. Oikos 118:521–528

    Article  Google Scholar 

  • Lindström J (1994) Tetraonid population studies - state of the art. Ann Zool Fenn 31:347–364

    Google Scholar 

  • Loneux M, Lindsey JK (2003) Climatic modelling of black grouse population dynamics: a game or a tool? Sylvia 39:43–57

    Google Scholar 

  • Ludwig GX, Alatalo RV, Helle P, Lindén H, Lindström J, Siitari H (2006) Short- and long-term population dynamical consequences of asymmetric climate change in black grouse. Proc R Soc Lond B 273:2009–2016

    Google Scholar 

  • Magnani Y (1987) Réflexions sur la dynamique d’une population de Tétras lyre Tetrao tetrix L. des Alpes françaises. In: Institut d’analyse des systèmes biologiques et socio-économiques - Laboratoire de biométrie. Université Claude Bernard Lyon I, Lyon

    Google Scholar 

  • Martin K, Wiebe KL (2004) Coping mechanisms of Alpine and Arctic breeding birds: extreme weather and limitations to reproductive resilience. Int Comp Biol 44:177–185

    Article  Google Scholar 

  • Mc Cullagh P, Nelder JA (1989) Generalized linear models. Chapman and Hall/CRC

  • Moss R, Watson A, Parr R (1975) Maternal nutrition and breeding success in red grouse (Lagopus lagopus scoticus). J Anim Ecol 44:233–244

    Article  Google Scholar 

  • Moss R, Watson A, Rothery P, Glennie WW (1981) Clutch size, egg size, hatch weight and laying date in relation to early mortality in red grouse (Lagopus lagopus scoticus) chicks. Ibis 123:450–462

    Article  Google Scholar 

  • Moss R, Oswald J, Baines D (2001) Climate change and breeding success: decline of the capercaillie in Scotland. J Anim Ecol 70:47–61

    Google Scholar 

  • Novoa C, Besnard A, Brenot J-F, Ellison LN (2008) Effect of weather on the reproductive rate of rock ptarmigan Lagopus amuta in the eastern pyrenees. Ibis 150:270–278

    Article  Google Scholar 

  • Observatoire des Galliformes de Montagne (OGM) (2003) Rapport annuel 2003—OGM edts

  • Ozenda P (1981) Végétation des Alpes sud-occidentales. Notice détaillée des feuilles 60 Gap 61 Larche 67 Digne 68 Nice 75 Antibes CNRS

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  PubMed  Google Scholar 

  • Patthey P, Wirthner S, Signorell N, Arlettaz R (2008) Impact of outdoor winter sports on the abundance of a key indicator species of alpine ecosystems. J Appl Ecol 45:1704–1711

    Article  Google Scholar 

  • Pimm S, Raven P, Peterson A, Sekercioglu CH, Ehrlich PR (2006) Human impacts on the rates of recent, present, and future bird extinctions. Proc Natl Acad Sci USA 103:10941–10946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Portis DH, Walsh JE, El Hamly M, Lamb PJ (2001) Seasonality of the North Atlantic oscillation. J Clim 14:2069–2078

    Article  Google Scholar 

  • R Development Core Team (2007) R: A Language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. http://www.r.project.org

  • Reed ET, Gauthier G, Giroux JF (2004) Effects of spring conditions on breeding propensity of greater snow goose females. Anim Biodivers Conserv 27:35–46

    Google Scholar 

  • Saether B-E, Sutherland WJ, Engen S (2004) Climate influences on avian population dynamics. Adv Ecol Res 35:185–209

    Article  Google Scholar 

  • Sandercock BK, Martin K, Hannon SJ (2005) Demographic consequences of age-structure in extreme environments: population models for arctic and alpine ptarmigan. Oecologia 146:13–24

    Article  PubMed  Google Scholar 

  • Seber GAF (1982) The estimation of animal abundance and related parameters, 2nd edn. Macmillan, New York

    Google Scholar 

  • Sekercioglu CH, Schneider SH, Fay JP, Loarie SR (2008) Climate change, elevational range shifts, and bird extinctions. Conserv Biol 22:140–150

    Article  PubMed  Google Scholar 

  • Selmi S, Boulinier T, Faivre B (2003) Distribution and abundance patterns of a newly colonizing species in Tunisian oases: the common blackbird Turdus merula. Ibis 145:681–688

    Article  Google Scholar 

  • Siivonen L (1957) The problem of the short-term fluctuations in numbers of tetraonids in Europe. Pap Game Res 19:1–44

    Google Scholar 

  • Slagsvold T, Grasaas T (1979) Autumn population size of the capercaillie Tetrao urogallus in relation to weather. Ornis Scand 10:37–41

    Article  Google Scholar 

  • Spidsö TK, Hjeljord O, Dokk JG (1997) Seasonal mortality of black grouse Tetrao tetrix during a year with little snow. Wildl Biol 3:205–209

    Article  Google Scholar 

  • Stenseth NC, Mysterud A (2005) Weather packages: finding the right scale and composition of climate in ecology. J Anim Ecol 74:1195–1198

    Article  Google Scholar 

  • Stenseth NC, Ottersen G, Hurrell JW, Mysterud A, Lima M, Chan K-S, Yoccoz NG, Adlandsvik B (2003) Studying climate effects on ecology through the use of climate indices: the North Atlantic oscillation, El Nino Southern oscillation and beyond. Proc R Soc Lond B 270:2087–2096

    Article  Google Scholar 

  • Storch I (2007) Grouse: status survey and conservation action plan 2006–2010. IUCN, Gland, Switzerland

  • Swenson JE, Saari L, Bonczar Z (1994) Effects of weather on hazel grouse reproduction: an allometric perspective. J Av Biol 25:8–14

    Article  Google Scholar 

  • Taulavuori K, Laine K, Taulavuori E, Pakonen T, Saari E (1997) Accelerated dehardening in bilberry (Vaccinium myrtillus L.) induced by a small elevation in air temperature. Environ Poll 98:91–95

    Article  CAS  Google Scholar 

  • Theurillat JP, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Change 50:77–109

    Article  CAS  Google Scholar 

  • Thompson FR, Fritzel EK (1988) Ruffed grouse winter roost site preference and influence on energy demands. J Wildl Manage 52:454–460

    Article  Google Scholar 

  • Thuiller W, Lavorel S, Araujo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245–8250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visbeck M, Hurrell JW, Polvani L, Cullen HM (2001) The North Atlantic oscillation: past, present, and future. Proc Natl Acad Sci USA 98:12876–12877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  PubMed  Google Scholar 

  • Wilson RJ, Gutierrez D, Gutierrez J, Martinez D, Agudo R, Monserrat VJ (2005) Changes to the elevational limits and extent of species ranges associated with climate change. Ecol Lett 8:1138–1146

    Article  PubMed  Google Scholar 

  • Wood SN (2006) Generalized additive models. An introduction with R. Texts in Statistical Science. Chapman and Hall

  • Zbinden N, Salvioni M (2004) Bedeutung der Temperatur in der frühen Aufzuchtzeit für den Forpflanzungserfolg des Birkhuns Tetrao tetrix auf verschiedenen Höhenstufen im Tessin, Südschweiz. Ornithol Beob 101:307–318

    Google Scholar 

Download references

Acknowledgments

We wish to thank the French Mountain Galliforms Observatory (OGM) which leads the surveys on which our data are based. We also thank A. Charmantier, V. Grosbois, J.W. Hurrell and C. Folland for helpful discussions about various aspects of this study. A. Mysterud and R. Bischof, and two anonymous referees contributed through their valuable comments on an earlier version of this manuscript. H. Bohbot and S. Marin provided helpful contributions in the use of geographical data related to our dataset. The fieldwork carried out for this study complies with the French laws.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Yves Barnagaud.

Additional information

Communicated by F. Bairlein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnagaud, JY., Crochet, P.A., Magnani, Y. et al. Short-term response to the North Atlantic Oscillation but no long-term effects of climate change on the reproductive success of an alpine bird. J Ornithol 152, 631–641 (2011). https://doi.org/10.1007/s10336-010-0623-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-010-0623-8

Keywords

Navigation