Skip to main content
Log in

Modelling the recent and potential future spatial distribution of the Ring Ouzel (Turdus torquatus) and Blackbird (T. merula) in Switzerland

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

We present here a multiscale modelling approach to predict the current and future spatial distribution of Ring Ouzel (Turdus torquatus) and Blackbird (T. merula) in Switzerland. Species distribution models (SDMs) are applied on three different scales in order to analyse the scale-dependency of predictors that describe the species’ realised niche. While the models on the macro- and mesoscales (grid of 100 and 1 km2, respectively) cover the entire country, our small-scale models are based on a small set of territories. Ring Ouzels occur at altitudes above 1000 m a.s.l. only, while Blackbirds occur from the lowlands up to the timberline. Although both species coexist on the macro- and mesoscales, a direct niche overlap on territory scale is rare. Small-scale differences in vegetation cover and structure seem to play a dominant role in habitat selection. On the macroscale, however, we observed a high dependency on bioclimatic variables that mainly represent the altitudinal range and the related forest structure preferred by both species. Applying the models to climate change scenarios, we predict a decline of suitable habitat for the Ring Ouzel with a simultaneous median altitudinal shift of 440 m until 2070. In contrast, the Blackbird is predicted to benefit from higher temperatures and expand its range to higher elevations. Based on the species distribution models we (1) demonstrate the scale-dependency of environmental predictors, (2) quantify the scale-dependent habitat requirements of Blackbird and Ring Ouzel and (3) predict the altitudinal range shift of both species as related to climate change scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akaike H (1974) A new look at statistical model identification. IEEE Trans Automat Contr 19:716–722

    Google Scholar 

  • Araújo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species-climate impact models under climate change. Glob Change Biol 11:1504–1513

    Google Scholar 

  • Baur P, Bebi P, Gellrich M, Rutherford G (2006) Forest expansion in the Swiss Alps: a quantitative analysis of bio-physical and socio-economic causes with an emphasis on structural change in agriculture. Federal Research Institute WSL, Birmensdorf/Switzerland. Available at http://www.wsl.ch/projects/WaSAlp

  • Beale CM, Burfield IJ, Sim IMW, Rebecca GW, Pearce-Higgins JW, Grant MC (2006) Climate change may account for the decline in British Ring Ouzels Turdus torquatus. J Anim Ecol 75:826–835

    PubMed  Google Scholar 

  • Bebi P, Baur P (2002) Forest expansion in the Swiss Alps: a quantitative analysis of bio-physical and socio-economic causes. Centralbl Ges Forstwesen 3/4:217–230

    Google Scholar 

  • Beers TW, Dress PE, Wensel LC (1966) Aspect transformation in site productivity research. J For 64:691–692

    Google Scholar 

  • Beniston M, Diaz HF, Bradley RS (1997) Climatic change at high elevation sites: an overview. Climate Change 36:233–251

    Google Scholar 

  • Berg-Schlosser G (1980) Über Ökologie und Häufigkeitsstruktur von Drossel- und Meisenpopulationen eines subalpinen Koniferenwaldes. Verh Ornithol Ges Bayern 23:347–364

    Google Scholar 

  • Betts MG, Diamond AW, Forbes GJ, Villard MA, Gunn JS (2006) The importance of spatial autocorrelation, extent and resolution in predicting forest bird occurrence. Ecol Model 191:197–224

    Google Scholar 

  • Binzenhöfer B, Schröder B, Strauss B, Biedermann R, Settele J (2005) Habitat models and habitat connectivity analysis for butterflies and burnet moths––the example of Zygaena carniolica and Coenonympha arcania. Biol Conserv 126:247–259

    Google Scholar 

  • Bivand R, Anselin L, Bernat A, Carvalho MM, Chun Y, Dormann C, Dray S, Halbersma R, Lewin-Koh N, Ono H, Tiefelsdorf M, Tiefelsdorf D (2005) Spdep: spatial dependence: weighting schemes, statistics and models. R package version 0.3–17. R Foundation for Statistical Computing, Vienna

  • Bjørnstad ON (2004) Ncf: spatial nonparamteric covariance functions. R package version 1.0–6. R Foundation for Statistical Computing, Vienna. Available at http://onb.ent.psu.edu/onb1/R

  • Bolliger J (2002) Schweizer Wälder und Klimaveränderungen: Vergleich von Simulationen quantitativer Vegetationsmodelle. Schweiz Z Forstwesen 153:167–175

    Google Scholar 

  • Bolliger J, Kienast F, Zimmermann NE (2000) Risks of global warming on montane and subalpine forests in Switzerland––a modeling study. Regional Environ Change 1:99–111

    Google Scholar 

  • Buchanan GM, Pearce-Higgins JW, Wotton SR, Grant MC, Whitfield DP (2003) Correlates of the change in Ring Ouzel Turdus torquatus abundance in Scotland from 1988–91 to 1999. Bird Study 50:97–105

    Google Scholar 

  • Burfield I (2002) The breeding ecology and conservation of the Ring Ouzel Turdus torquatus in Britain. University of Cambridge, Cambridge

  • Burfield IJ, Brooke MdL (2005) The decline of the Ring Ouzel Turdus torquatus in Britain: evidence from bird observatory data. Ring Migr 22:199–204

    Google Scholar 

  • Christensen JH, Carter T, Giorgi F (2002) PRUDENCE employs new methods to assess European climate change. EOS 83:147

    Google Scholar 

  • Cushman SA, McGarigal K (2004). Patterns in the species-environment relationship depend on both scale and choice of response variables. Oikos 105:117–124

    Google Scholar 

  • Dormann CF, McPherson JM, Araújo MB, Bivand R, Bolliger J, Carl G, Davis R, Hirzel A, Jetz W, Kissling WD, Kühn I, Ohlemüller R, Peres-Neto PR, Reineking B, Schröder B, Schurr FM, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628

    Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JMM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Google Scholar 

  • Engler R, Guisan A, Rechsteiner L (2004) An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. J Appl Ecol 41:263–274

    Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Google Scholar 

  • Frei C (2004) Die Klimazukunft der Schweiz—Eine probabilistische Projektion. Institut für Atmosphäre und Klima, ETH Zürich, Zurich

    Google Scholar 

  • Frei C, Schöll R, Fukutome S, Schmidli J, Vidale PL (2006) Future change of precipitation extremes in Europe: an intercomparison of scenarios from regional climate models. J Geophys Res 111:D06105

    Google Scholar 

  • Glutz von Blotzheim UN, Bauer KM (1988) Handbuch der Vögel Mitteleuropas. Aula-Verlag, Wiesbaden

  • Graf RF, Bollmann K, Suter W, Bugmann H (2005) The importance of spatial scale in habitat models: the case of the capercaillie. Landsc Ecol 20:703–717

    Google Scholar 

  • Greaves RK, Sanderson RA, Rushton SP (2006) Predicting species occurrence using information-theoretic approaches and significance testing: an example of dormouse distribution in Cumbria, UK. Biol Conserv 130:239–250

    Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Google Scholar 

  • Harrell FE Jr (2001) Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. Springer, New York

    Google Scholar 

  • Hatchwell BJ, Chamberlain DE, Perrins CM (1996) The reproductive success of Blackbirds Turdus merula in relation to habitat structure and choice of nest site. Ibis 138:256–262

    Google Scholar 

  • Hegg O, Béguin C, Zoller H (1993) Atlas schutzwürdiger Vegetationstypen der Schweiz. Bundesamt für Umwelt, Wald und Landschaft, Bern

    Google Scholar 

  • Hirzel AH, Helfer V, Metral F (2001) Assessing habitat-suitability models with a virtual species. Ecol Model 145:111–122

    Google Scholar 

  • Hirzel AH, Posse B, Oggier P-A, Crettenand Y, Glenz C, Arlettaz R (2004) Ecological requirements of reintroduced species and the implications for release policy: the case of the bearded vulture. J Appl Ecol 41:1103–1116

    Google Scholar 

  • Hosmer DW, Lemeshow S (2000) Applied logistic regression. Wiley, New York

    Google Scholar 

  • Hughes L (2000) Biological consequences of global warming: is the signal already. Trends Ecol Evol 15:56–61

    CAS  PubMed  Google Scholar 

  • Huntley B, Berry PM, Cramer W, McDonald AP (1995) Modelling present and potential future ranges of some European higher plants using climate response surfaces. J Biogeogr 22:967–1001

    Google Scholar 

  • Huntley B, Collingham YC, Green RE, Hilton GM, Rahbek C, Willis SG (2006) Potential impacts of climatic change upon geographical distributions of birds. Ibis 148:8–28

    Google Scholar 

  • International Panel on Climate Change (IPCC) (2001) Climate change 2001: synthesis report. Cambridge University Press, London

  • Kienast F, Brezeziecki B, Wildi O (1996) Long-term adaption potential of Central European mountain forests to climate change: a GIS-assisted sensitivity assessment. For Ecol Manage 80:133–153

    Google Scholar 

  • Kronshage A (2003) Zum Vorkommen von fünf Drosselarten in einem Hochtal der Zentralalpen (Oberengadin/Schweiz): Ringdrossel (Turdus torquatus alpestris), Amsel (Turdus merula), Wachholderdrossel (Turdus pilaris), Misteldrossel (Turdus viscivorus) und Singdrossel (Turdus philomelos). In: Geowissenschaften/Landschaftsökologie. Westfälische Wilhelms-Universität Münster, Münster, p 294

  • Landmann A (1991) Habitatpräferenzen, Dynamik der Raumnutzung und Bestandsstruktur bei Dorfamseln (Turdus merula). J Ornithol 132:303–318

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, developments in environmental modeling. Elsevier, Amsterdam

    Google Scholar 

  • Lichstein JW, Simons TR, Shriner SA, Franzreb KE (2002) Spatial autocorrelation and autoregressive models in ecology. Ecol Monogr 72:445–463

    Google Scholar 

  • Luoto M, Virkkala R, Heikkinen RK (2007) The role of land cover in bioclimatic models depends on spatial resolution. Glob Ecol Biogeogr 16:34–42

    Google Scholar 

  • Mac Nally R (2000) Regression and model-building in conservation biology, biogeography and ecology: the distinction between––and reconciliation of––‘predictive’ and ‘explanatory’ models. Biodivers Conserv 9:655–671

    Google Scholar 

  • Mac Nally R, Walsh CJ (2004) Hierarchical Partitioning Public-domain Software. Biodivers Conserv 13:659–660

    Google Scholar 

  • Mackey BG, Lindenmayer DB (2001) Towards a hierarchical framework for modelling the spatial distribution of animals. J Biogeogr 28:1147–1166

    Google Scholar 

  • Magnusson JJ (1990) Long-term ecological research on the invisible present. BioScience 40:495–501

    Google Scholar 

  • Marchant JH, Hudson R, Carter SP, Whittingham P (1990) Population trends in British breeding birds. British Trust for Ornithology, Tring

    Google Scholar 

  • Mattes H, Maurizio R, Bürkli W (2005) Die Vogelwelt im Oberengadin, Bergell und Puschlav. Ein Naturführer zur Avifauna in einem inneralpinen Gebiet. Schweizerische Vogelwarte, Sempach

    Google Scholar 

  • McCollin D (1998) Forest edges and habitat selection in birds: a functional approach. Ecography 21:247–260

    Google Scholar 

  • Nagelkerke NJD (1991) A note on general definition of the coefficient of determination. Biometrika 78:691–692

    Google Scholar 

  • Neilson RP, Pitelka LF, Solomon AM, Nathan R, Midgley GF, Fragoso JMV, Lischke H, Thompson K (2005) Forecasting regional to global plant migration in response to climate change. BioScience 55:749–759

    Google Scholar 

  • Oberwalder J, Lair C, Foeger M, Pollheimer M (2002) Siedlungsökologie von Drosseln Turdus sp. entlang eines alpinen Höhengradienten. Ornithol Beob 99:205–220

    Google Scholar 

  • Oppel S, Schaefer HM, Schmidt V, Schröder B (2004) Habitat selection by the pale-headed brush-finch (Atlapetes pallidiceps) in southern Ecuador: implications for conservation. Biol Conserv 118:33–40

    Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    CAS  Google Scholar 

  • R Development Core Team (2006) R: a language and environment for statistical computing. Vienna, Austria. Available at www.R-project.org

  • Reineking B, Schröder B (2006) Constrain to perform: regularization of habitat models. Ecol Model 193:675–690

    Google Scholar 

  • Ricketts TH (2001) The matrix matters: effective isolation in fragmented landscapes. Am Nat 158:87–99

    CAS  PubMed  Google Scholar 

  • Schmid H, Luder R, Naef-Daenzer B, Graf R, Zbinden N (1998) Schweizer Brutvogelatlas. Verbreitung der Brutvögel in der Schweiz und im Fürstentum Liechtenstein 1993–1996. Schweizerische Vogelwarte, Sempach

    Google Scholar 

  • Schmid H, Zbinden N, Keller V (2004) Überwachung der Bestandsentwicklung häufiger Brutvögel in der Schweiz/Surveillance de l’évolution des effectifs des oiseaux nicheurs répandus en Suisse. Schweizerische Vogelwarte, Sempach

    Google Scholar 

  • Sergio F (2003) Relationship between laying dates of black kites Milvus migrans and spring temperatures in Italy: rapid response to climate change? J Avian Biol 34:144–149

    Google Scholar 

  • Steffan-Dewenter I, Münzenberg U, Bürger C, Thies C, Tscharntke T (2002) Scale-dependent effects of landscape context on three pollinator guilds. Ecol Lett 83:1421–1432

    Google Scholar 

  • Stephan B (1999) Die Amsel. Westarp Wissenschaft, Hohenwarsleben

    Google Scholar 

  • Stierlin H-R, Brändli U-B, Herold A, Zinggeler J (1994) Schweizer Landesforstinventar. Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft, Birmensdorf

    Google Scholar 

  • Theurillat J-P, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Climatic Change 50:77–109

    CAS  Google Scholar 

  • Thuiller W (2003) BIOMOD––optimizing predictions of species distributions and projecting potential future shifts under global change. Glob Change Biol 9:1353–1362

    Google Scholar 

  • Thuiller W (2004) Patterns and uncertainties of species’ range shifts under climate change. Glob Change Biol 10:2020–2027

    Google Scholar 

  • Verbyla DL, Litvaitis JA (1989) Resampling methods for evaluation of classification accuracy of wildlife habitat models. Environ Manage 13:783–787

    Google Scholar 

  • Wiens JA, Rotenberry JT (1981) Habitat associations and community structure of birds in shrubsteppe environments. Ecol Monogr 51:21–42

    Google Scholar 

  • Wysocki D, Adamowicz J, Kosciow R, Smietana P (2004) The size of breeding territory in an urban population of the Blackbird (Turdus merula) in Szczecin (NW Poland). Ornis Fenn 81:1–12

    Google Scholar 

Download references

Acknowledgments

This study has been funded by the German Academic Foreign Exchange Service (DAAD) and was supported by the Swiss Ornithological Institute at Sempach, Switzerland. We are grateful to the colleagues of the Swiss Ornithological Institute for supporting our work, especially Christian Marti and Niklaus Zbinden, who provided tremendous support during this study. This research has benefited from correspondence with Christoph Frei (ETH Zürich). Finally, we want to thank Katrin Böhning-Gaese, Jutta von dem Bussche and an anonymous reviewer for their constructive comments on the manuscript. We confirm that we have not performed any experiments that do not comply with Swiss laws.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Schröder.

Additional information

Communicated by F. Bairlein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von dem Bussche, J., Spaar, R., Schmid, H. et al. Modelling the recent and potential future spatial distribution of the Ring Ouzel (Turdus torquatus) and Blackbird (T. merula) in Switzerland. J Ornithol 149, 529–544 (2008). https://doi.org/10.1007/s10336-008-0295-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-008-0295-9

Keywords

Navigation