Skip to main content

Advertisement

Log in

Preparation of MnO2@poly-(DMAEMA-co-IA)-conjugated methotrexate nano-complex for MRI and radiotherapy of breast cancer application

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

A novel efficient pH-sensitive targeted magnetic resonance imaging (MRI) contrast agent and innovative radio-sensitizing system were synthesized based on MnO2 NPs coated with biocompatible poly-dimethyl-amino-ethyl methacrylate-Co-itaconic acid, (DMAEMA-Co-IA) and targeted with methotrexate (MTX).

Materials and methods

The as-established NPs were fully characterized and evaluated for MRI signal enhancement, relaxivity, in vitro cell targeting, cell toxicity, blood compatibility, and radiotherapy (RT) efficacy.

Results

The targeted NPs MnO2@Poly(DMAEMA-Co-IA) and MTX-loaded NPs inhibited MCF-7 cell viability more effectively than free MTX after 24 and 48 h, respectively, with no noticeable toxicity. Additionally, the insignificant hemolytic activity demonstrated their proper hemo-compatibility. T1-weighted magnetic resonance imaging was used to distinguish the differential uptake of the produced MnO2@Poly(DMAEMA-Co-IA)-MTX NPs in malignant cells compared to normal ones in the presence of high and low MTX receptor cells (MCF-7 and MCF-10A, respectively). In MRI, the produced theranostic NPs displayed pH-responsive contrast enhancement. As shown by in vitro assays, treatment of cells with MnO2@Poly(DMAEMA-Co-IA)-MTX NPs prior to radiotherapy in hypoxic conditions significantly enhanced therapeutic efficacy.

Conclusion

We draw the conclusion that using MnO2@Poly(DMAEMA-Co-IA)-MTX NPs in MR imaging and combination radiotherapy may be a successful method for imaging and radiation therapy of hypoxia cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data cannot be shared openly but are available on request.

References

  1. Clarke JN, Everest MMJSs medicine (2006) Cancer in the mass print media: Fear, uncertainty and the medical model. Soc Sci Med 62:2591–2600

    Article  PubMed  Google Scholar 

  2. Armitage EG, Barbas C (2014) Metabolomics in cancer biomarker discovery: current trends and future perspectives. J Pharm Biomed Anal 87:1–11

    Article  CAS  PubMed  Google Scholar 

  3. Mortezazadeh T, Gholibegloo E, Alam NR, Dehghani S, Haghgoo S, Ghanaati H, Khoobi M (2019) Gadolinium (III) oxide nanoparticles coated with folic acid-functionalized poly (β-cyclodextrin-co-pentetic acid) as a biocompatible targeted nano-contrast agent for cancer diagnostic: in vitro and in vivo studies. MAGMA 32:487–500

    Article  CAS  PubMed  Google Scholar 

  4. Mortezazadeh T, Gholibegloo E, Haghgoo S, Musa A, Khoobi M (2020) Glucosamine conjugated gadolinium (III) oxide nanoparticles as a novel targeted contrast agent for cancer diagnosis in MRI. JBPE 10:25

    Article  Google Scholar 

  5. James ML, Gambhir SS (2012) A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 92:897–965

    Article  CAS  PubMed  Google Scholar 

  6. Khalilnejad M, Mortezazadeh T, Shayan RG (2021) Application of Manganese Oxide (MnO) nanoparticles in multimodal molecular imaging and cancer therapy: a review. Nanomed J 8:166–178

    CAS  Google Scholar 

  7. Abdollahi BB, Malekzadeh R, Azar FP, Salehnia F, Naseri AR, Ghorbani M, Hamishehkar H, Farajollahi AR (2021) Main approaches to enhance radiosensitization in cancer cells by nanoparticles: a systematic review. Adv Pharm Bull 11:212

    CAS  Google Scholar 

  8. Mansouri H, Gholibegloo E, Mortezazadeh T, Yazdi MH, Ashouri F, Malekzadeh R, Najafi A, Foroumadi A, Khoobi M (2021) A biocompatible theranostic nanoplatform based on magnetic gadolinium-chelated polycyclodextrin: in vitro and in vivo studies. Carbohydr Polym 254:117262

    Article  CAS  PubMed  Google Scholar 

  9. Mortezazadeh T, Gholibegloo E, Khoobi M, Alam NR, Haghgoo S, Mesbahi A (2020) In vitro and in vivo characteristics of doxorubicin-loaded cyclodextrine-based polyester modified gadolinium oxide nanoparticles: a versatile targeted theranostic system for tumour chemotherapy and molecular resonance imaging. J Drug Target 28:533–546

    Article  CAS  PubMed  Google Scholar 

  10. Narmani A, Farhood B, Haghi-Aminjan H, Mortezazadeh T, Aliasgharzadeh A, Mohseni M, Najafi M, Abbasi H (2018) Gadolinium nanoparticles as diagnostic and therapeutic agents: their delivery systems in magnetic resonance imaging and neutron capture therapy. J Drug Deliv Sci Technol 44:457–466

    Article  CAS  Google Scholar 

  11. Malekzadeh R, Babaye Abdollahi B, Ghorbani M, Pirayesh Islamian J, Mortezazadeh T (2022) Trastuzumab conjugated PEG–Fe3O4@ Au nanoparticle as an MRI biocompatible nano-contrast agent. Int J Polym Mater Polym. https://doi.org/10.1080/00914037.2022.2058944

    Article  Google Scholar 

  12. Ojeda-Fournier H, Choe KA, Mahoney MC (2007) Recognizing and interpreting artifacts and pitfalls in MR imaging of the breast. Radiographics 27:S147–S164

    Article  PubMed  Google Scholar 

  13. Mittal P, Kalia V, Dua S (2010) Pictorial essay: susceptibility-weighted imaging in cerebral ischemia. Indian J Radiol Imaging 20:250–253

    Article  PubMed  PubMed Central  Google Scholar 

  14. García-Hevia L, Bañobre-López M, Gallo J (2019) Recent progress on manganese-based nanostructures as responsive MRI contrast agents. Chem Eur J 25:431–441

    Article  PubMed  Google Scholar 

  15. Khalilnejad M, Divband B, Gharehaghaji N, Mortezazadeh T (2022) Multifunctional polyethylene glycol-coated Au@ MnO nanoparticles for dual-modal CT/MRI and pH-responsive 5-Fluorouracil delivery. Int J Polym Mater Polym. https://doi.org/10.1080/00914037.2022.2102007

    Article  Google Scholar 

  16. Pan D, Schmieder AH, Wickline SA, Lanza GM (2011) Manganese-based MRI contrast agents: past, present and future. Tetrahedron 67:8431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pan D, Caruthers SD, Senpan A, Schmieder AH, Wickline SA, Lanza GM (2011) Revisiting an old friend: manganese-based MRI contrast agents. Wiley Interdiscip Rev Nanomed 3:162–173

    Article  CAS  Google Scholar 

  18. Song M, Liu T, Shi C, Zhang X, Chen X (2016) Bioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumor-associated macrophages toward M1-like phenotype and attenuating tumor hypoxia. ACS Nano 10:633–647

    Article  CAS  PubMed  Google Scholar 

  19. Li S, Shang L, Xu B, Wang S, Gu K, Wu Q, Sun Y, Zhang Q, Yang H, Zhang F (2019) A nanozyme with photo-enhanced dual enzyme-like activities for deep pancreatic cancer therapy. Angew Chem 131:12754–12761

    Article  Google Scholar 

  20. Dai Phung C, Tran TH, Nguyen HT, Jeong J-H, Yong CS, Kim JO (2020) Current developments in nanotechnology for improved cancer treatment, focusing on tumor hypoxia. J Control Release 324:413–429

    Article  Google Scholar 

  21. Gholibegloo E, Ebrahimpour A, Mortezazadeh T, Sorouri F, Foroumadi A, Firoozpour L, Ardestani MS, Khoobi M (2022) pH-Responsive chitosan-modified gadolinium oxide nanoparticles delivering 5-aminolevulinic acid: a dual cellular and metabolic T1–T2* contrast agent for glioblastoma brain tumors detection. J Mol Liq 368:120628

    Article  CAS  Google Scholar 

  22. Cong C, He Y, Zhao S, Zhang X, Li L, Wang D, Liu L, Gao D (2021) Diagnostic and therapeutic nanoenzymes for enhanced chemotherapy and photodynamic therapy. J Mater Chem B 9:3925–3934

    Article  CAS  PubMed  Google Scholar 

  23. Thakre A, Gholse Y, Kasliwal R (2016) Nanosponges: a novel approach of drug delivery system. J Med Pharm Allied Sci 78:78

    Google Scholar 

  24. Lin L, Xu W, Liang H, He L, Liu S, Li Y, Li B, Chen Y (2015) Construction of pH-sensitive lysozyme/pectin nanogel for tumor methotrexate delivery. Colloids Surf B 126:459–466

    Article  CAS  Google Scholar 

  25. Yu W-J, Huang D-X, Liu S, Sha Y-L, Gao F-h, Liu H (2020) Polymeric nanoscale drug carriers mediate the delivery of methotrexate for developing therapeutic interventions against cancer and rheumatoid arthritis. Front Oncol 10:1734

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chen H, He J (2008) Facile synthesis of monodisperse manganese oxide nanostructures and their application in water treatment. J Phys Chem C 112:17540–17545

    Article  CAS  Google Scholar 

  27. Gholibegloo E, Mortezazadeh T, Salehian F, Forootanfar H, Firoozpour L, Foroumadi A, Ramazani A, Khoobi M (2019) Folic acid decorated magnetic nanosponge: an efficient nanosystem for targeted curcumin delivery and magnetic resonance imaging. J Colloid Interface Sci 556:128–139

    Article  CAS  PubMed  Google Scholar 

  28. Jahanbin T, Sauriat-Dorizon H, Spearman P, Benderbous S, Korri-Youssoufi H (2015) Development of Gd (III) porphyrin-conjugated chitosan nanoparticles as contrast agents for magnetic resonance imaging. Mater Sci Eng C 52:325–332

    Article  CAS  Google Scholar 

  29. Matthiesen S, Jahnke R, Knittler MR (2021) A straightforward hypoxic cell culture method suitable for standard incubators. Methods Protoc 4:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang Z, Zhang Y, Ju E, Liu Z, Cao F, Chen Z, Ren J, Qu X (2018) Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors. Nat Commun 9:3334

    Article  PubMed  PubMed Central  Google Scholar 

  31. Abdollahi BB, Ghorbani M, Hamishehkar H, Malekzadeh R, Farajollahi A (2022) Synthesis and characterization of actively HER-2 Targeted Fe3O4@ Au nanoparticles for molecular radiosensitization of breast cancer. Bioimpacts 13:17–29

    Article  Google Scholar 

  32. Asghariazar V, Kadkhodayi M, Mansoori B, Mohammadi A, Baradaran B (2022) Restoration of miR-143 reduces migration and proliferation of bladder cancer cells by regulating signaling pathways involved in EMT. Mol Cell Probes 61:101794

    Article  CAS  PubMed  Google Scholar 

  33. Rashid Z, Ranjha NM, Razzaq R, Raza H (2018) Fabrication and in vitro evaluation of novel pH-sensitive poly (2-methoxyethyl methacrylate-co-itaconic acid) microgels. Adv Polym Technol 37:1268–1277

    Article  CAS  Google Scholar 

  34. Kumar Y, Chopra S, Gupta A, Kumar Y, Uke S, Mardikar S (2020) Low temperature synthesis of MnO2 nanostructures for supercapacitor application. Mater Sci Eng Technol 3:566–574

    CAS  Google Scholar 

  35. Feng L, Xuan Z, Zhao H, Bai Y, Guo J, Su C-w, Chen X (2014) MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery. Nanoscale Res Lett 9:1–8

    Article  Google Scholar 

  36. Mylarappa M, Lakshmi VV, Mahesh KV, Nagaswarupa H, Raghavendra N (2016) A facile hydrothermal recovery of nano sealed MnO2 particle from waste batteries: An advanced material for electrochemical and environmental applications. In: IOP Conference Series: Materials Science and Engineering. vol 1. IOP Publishing, p 012178

  37. Patil DM, Phalak GA, Mhaske S (2017) Design and synthesis of bio-based UV curable PU acrylate resin from itaconic acid for coating applications. Des Monomers Polym 20(1):269–282

    Article  CAS  PubMed  Google Scholar 

  38. Rashid Z, Ranjha NM, Rashid F, Razzaq R (2018) Pharmacokinetic evaluation of novel pH-sensitive poly (2-methoxyethyl methacrylate-co-itaconic acid) microgels in rabbits. Adv Polym Technol 37(8):3813–3817

    Article  CAS  Google Scholar 

  39. Jiang F, Chen S, Cao Z, Wang G (2016) A photo, temperature, and pH responsive spiropyran-functionalized polymer: synthesis, self-assembly and controlled release. Polymer 83:85–91

    Article  CAS  Google Scholar 

  40. Naghdi S, Sajjadi M, Nasrollahzadeh M, Rhee KY, Sajadi SM, Jaleh B (2018) Cuscuta reflexa leaf extract mediated green synthesis of the Cu nanoparticles on graphene oxide/manganese dioxide nanocomposite and its catalytic activity toward reduction of nitroarenes and organic dyes. J Taiwan Inst Chem Eng 86:158–173

    Article  CAS  Google Scholar 

  41. Derjaguin B, Landau L (1993) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Prog Surf Sci 43:30–59

    Article  Google Scholar 

  42. Nikam DS, Jadhav SV, Khot VM, Ningthoujam R, Hong CK, Mali SS, Pawar S (2014) Colloidal stability of polyethylene glycol functionalized Co 0.5 Zn 0.5 Fe 2 O 4 nanoparticles: effect of pH, sample and salt concentration for hyperthermia application. RSC Adv 4:12662–12671

    Article  CAS  Google Scholar 

  43. Moore TL, Rodriguez-Lorenzo L, Hirsch V, Balog S, Urban D, Jud C, Rothen-Rutishauser B, Lattuada M, Petri-Fink A (2015) Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem Soc Rev 44:6287–6305

    Article  CAS  PubMed  Google Scholar 

  44. Allouni ZE, Cimpan MR, Høl PJ, Skodvin T, Gjerdet NR (2009) Agglomeration and sedimentation of TiO2 nanoparticles in cell culture medium. Colloids Surf B Biointerfaces 68:83–87

    Article  CAS  PubMed  Google Scholar 

  45. Malekzadeh R, Ghorbani M, Faghani P, Abdollahi BB, Mortezazadeh T, Farhood B (2023) Fabrication of targeted gold nanoparticle as potential contrast agent in molecular CT imaging. J Radiat Res Appl Sci 16:100490

    CAS  Google Scholar 

  46. Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP (2005) Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem 338(2):284–293

    Article  CAS  PubMed  Google Scholar 

  47. Prasad P, Gordijo CR, Abbasi AZ, Maeda A, Ip A, Rauth AM, DaCosta RS, Wu XY (2014) Multifunctional albumin–MnO2 nanoparticles modulate solid tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial growth factor and enhance radiation response. ACS Nano 8:3202–3212

    Article  CAS  PubMed  Google Scholar 

  48. Zhu W, Liu K, Sun X, Wang X, Li Y, Cheng L, Liu Z (2015) Mn2+-doped prussian blue nanocubes for bimodal imaging and photothermal therapy with enhanced performance. ACS Appl Mater Interfaces 7:11575–11582

    Article  CAS  PubMed  Google Scholar 

  49. Chen Y, Yin Q, Ji X, Zhang S, Chen H, Zheng Y, Sun Y, Qu H, Wang Z, Li Y (2012) Manganese oxide-based multifunctionalized mesoporous silica nanoparticles for pH-responsive MRI, ultrasonography and circumvention of MDR in cancer cells. Biomaterials 33:7126–7137

    Article  CAS  PubMed  Google Scholar 

  50. Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann H-J (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Investig Radiol 40:715–724

    Article  Google Scholar 

  51. Wu X, Dawsey AC, Siriwardena-Mahanama BN, Allen MJ, Williams TJ (2014) A (Fluoroalkyl) guanidine modulates the relaxivity of a phosphonate-containing T1-shortening contrast agent. J Fluor Chem 168:177–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim H, Jin S, Choi H, Kang M, Park SG, Jun H, Cho H, Kang S (2021) Target-switchable Gd (III)-DOTA/protein cage nanoparticle conjugates with multiple targeting affibody molecules as target selective T1 contrast agents for high-field MRI. J Control Release 10(335):269–280

    Article  Google Scholar 

  53. van Zandwijk JK, Simonis FF, Heslinga FG, Hofmeijer EI, Geelkerken RH, Ten Haken B (2021) Comparing the signal enhancement of a gadolinium based and an iron-oxide based contrast agent in low-field MRI. PLoS ONE 16(8):e0256252

    Article  PubMed  PubMed Central  Google Scholar 

  54. Aime S, Caravan P (2009) Biodistribution of gadolinium-based contrast agents, including gadolinium deposition. J Magn Reson Imaging 30:1259–1267

    Article  PubMed  PubMed Central  Google Scholar 

  55. Luo Y, Wang TT, Teng Z, Chen P, Sun J, Wang Q (2013) Encapsulation of indole-3-carbinol and 3, 3′-diindolylmethane in zein/carboxymethyl chitosan nanoparticles with controlled release property and improved stability. Food Chem 139:224–230

    Article  CAS  PubMed  Google Scholar 

  56. Zhu W, Dong Z, Fu T, Liu J, Chen Q, Li Y, Zhu R, Xu L, Liu Z (2016) Modulation of hypoxia in solid tumor microenvironment with MnO2 nanoparticles to enhance photodynamic therapy. Adv Funct Mater 26(30):5490–5498

    Article  CAS  Google Scholar 

  57. Fu C, Duan X, Cao M, Jiang S, Ban X, Guo N, Zhang F, Mao J, Huyan T, Shen J (2019) Targeted magnetic resonance imaging and modulation of hypoxia with multifunctional hyaluronic acid-MnO2 nanoparticles in glioma. Adv Healthc Mater 8:1900047

    Article  Google Scholar 

  58. Yi X, Chen L, Zhong X, Gao R, Qian Y, Wu F, Song G, Chai Z, Liu Z, Yang K (2016) Core–shell Au@ MnO2 nanoparticles for enhanced radiotherapy via improving the tumor oxygenation. Nano Res 9(11):3267–3278

    Article  CAS  Google Scholar 

  59. Ma N, Jiang Y-W, Zhang X, Wu H, Myers JN, Liu P, Jin H, Gu N, He N, Wu F-G (2016) Enhanced radiosensitization of gold nanospikes via hyperthermia in combined cancer radiation and photothermal therapy. ACS Appl Mater Interfaces 8(42):28480–28494

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Medical Radiation Sciences Research Team, Tabriz University of Medical Sciences, Tabriz, Iran.

Funding

This study has been produced from a research under the title “Application of polyitaconic acid-coated manganese oxide nano-composite conjugated with methotrexate in magnetic resonance imaging and radiotherapy”, funded by the deputy of Research of Tabriz University of Medical Sciences, Tabriz, Iran (Grant # 68822) under the research ethics certificate ID: IR. TBZMED. REC.1400.1203.

Author information

Authors and Affiliations

Authors

Contributions

SZ: Acquisition of data, Synthesis of NPs, drafting of manuscript; RM: Acquisition of data, analysis and interpretation of data, drafting of manuscript; MG: Preparation and synthesis of NPs, study conception and design, review of manuscript; BN: Cooperation in radiation therapy; VA: Cooperation in cellular work; TM: Supervisor of study, analysis and interpretation of data, editing and critical revision of manuscript. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Tohid Mortezazadeh.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest.

Ethical approval

Research ethics certificate ID: IR. TBZMED. REC.1400.1203.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziyaee, S., Malekzadeh, R., Ghorbani, M. et al. Preparation of MnO2@poly-(DMAEMA-co-IA)-conjugated methotrexate nano-complex for MRI and radiotherapy of breast cancer application. Magn Reson Mater Phy 36, 779–795 (2023). https://doi.org/10.1007/s10334-023-01091-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-023-01091-1

Keywords

Navigation