Skip to main content
Log in

Development and testing of a deep learning-based strategy for scar segmentation on CMR-LGE images

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

The aim of this paper is to investigate the use of fully convolutional neural networks (FCNNs) to segment scar tissue in the left ventricle from cardiac magnetic resonance with late gadolinium enhancement (CMR-LGE) images.

Methods

A successful FCNN in the literature (the ENet) was modified and trained to provide scar-tissue segmentation. Two segmentation protocols (Protocol 1 and Protocol 2) were investigated, the latter limiting the scar-segmentation search area to the left ventricular myocardial tissue region. CMR-LGE from 30 patients with ischemic-heart disease were retrospectively analyzed, for a total of 250 images, presenting high variability in terms of scar dimension and location. Segmentation results were assessed against manual scar-tissue tracing using one-patient-out cross validation.

Results

Protocol 2 outperformed Protocol 1 significantly (p value < 0.05), with median sensitivity and Dice similarity coefficient equal to 88.07% [inter-quartile range (IQR) 18.84%] and 71.25% (IQR 31.82%), respectively.

Discussion

Both segmentation protocols were able to detect scar tissues in the CMR-LGE images but higher performance was achieved when limiting the search area to the myocardial region. The findings of this paper represent an encouraging starting point for the use of FCNNs for the segmentation of nonviable scar tissue from CMR-LGE images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. https://www.circlecvi.com/.

  2. https://www.tensorflow.org/.

References

  1. Alexandre J, Saloux E, Dugué AE, Lebon A, Lemaitre A, Roule V, Labombarda F, Provost N, Gomes S, Scanu P (2013) Scar extent evaluated by late gadolinium enhancement CMR: a powerful predictor of long term appropriate ICD therapy in patients with coronary artery disease. J Cardiovasc Magn Reson 15(1):12

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kelle S, Roes SD, Klein C, Kokocinski T, de Roos A, Fleck E, Bax JJ, Nagel E (2009) Prognostic value of myocardial infarct size and contractile reserve using magnetic resonance imaging. J Am Coll Cardiol 54(19):1770–1777

    Article  PubMed  Google Scholar 

  3. Usta F, Gueaieb W, White JA, McKeen C, Ukwatta E (2018) Comparison of myocardial scar geometries generated from 2D and 3D LGE MRI. In: Medical imaging 2018, international society for optics and photonics, vol 10578, p 105780K

  4. Dikici E, ODonnell T, Setser R, White RD (2004) Quantification of delayed enhancement MR images. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 250–257

  5. Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, Klocke FJ, Bonow RO, Judd RM (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343(20):1445–1453

    Article  CAS  PubMed  Google Scholar 

  6. Mewton N, Revel D, Bonnefoy E, Ovize M, Croisille P (2011) Comparison of visual scoring and quantitative planimetry methods for estimation of global infarct size on delayed enhanced cardiac MRI and validation with myocardial enzymes. Eur J Radiol 78(1):87–92

    Article  PubMed  Google Scholar 

  7. Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG, Kim RJ, von Knobelsdorff-Brenkenhoff F, Kramer CM, Pennell DJ (2013) Standardized image interpretation and post processing in cardiovascular magnetic resonance: society for cardiovascular magnetic resonance (SCMR) board of trustees task force on standardized post processing. J Cardiovasc Magn Reson 15(1):35

    Article  PubMed  PubMed Central  Google Scholar 

  8. Carminati MC, Boniotti C, Fusini L, Andreini D, Pontone G, Pepi M, Caiani EG (2016) Comparison of image processing techniques for nonviable tissue quantification in late gadolinium enhancement cardiac magnetic resonance images. J Thorac Imaging 31(3):168–176

    Article  PubMed  Google Scholar 

  9. Hsu LY, Natanzon A, Kellman P, Hirsch GA, Aletras AH, Arai AE (2006) Quantitative myocardial infarction on delayed enhancement MRI. Part I: animal validation of an automated feature analysis and combined thresholding infarct sizing algorithm. J Magn Reson Imaging 23(3):298–308

    Article  PubMed  Google Scholar 

  10. Hennemuth A, Seeger A, Friman O, Miller S, Klumpp B, Oeltze S, Peitgen HO (2008) A comprehensive approach to the analysis of contrast enhanced cardiac MR images. IEEE Trans Med Imaging 27(11):1592–1610

    Article  PubMed  Google Scholar 

  11. Pop M, Ghugre NR, Ramanan V, Morikawa L, Stanisz G, Dick AJ, Wright GA (2013) Quantification of fibrosis in infarcted swine hearts by ex vivo late gadolinium-enhancement and diffusion-weighted MRI methods. Phys Med Biol 58(15):5009

    Article  CAS  PubMed  Google Scholar 

  12. Fieno DS, Kim RJ, Chen EL, Lomasney JW, Klocke FJ, Judd RM (2000) Contrast-enhanced magnetic resonance imaging of myocardium at risk: distinction between reversible and irreversible injury throughout infarct healing. J Am Coll Cardiol 36(6):1985–1991

    Article  CAS  PubMed  Google Scholar 

  13. Gerber BL, Garot J, Bluemke DA, Wu KC, Lima JA (2002) Accuracy of contrast-enhanced magnetic resonance imaging in predicting improvement of regional myocardial function in patients after acute myocardial infarction. Circulation 106(9):1083–1089

    Article  PubMed  Google Scholar 

  14. Setser RM, Bexell DG, O’Donnell TP, Stillman AE, Lieber ML, Schoenhagen P, White RD (2003) Quantitative assessment of myocardial scar in delayed enhancement magnetic resonance imaging. J Magn Reson Imaging 18(4):434–441

    Article  PubMed  Google Scholar 

  15. Lund GK, Stork A, Saeed M, Bansmann MP, Gerken JH, Muller V, Mester J, Higgins CB, Adam G, Meinertz T (2004) Acute myocardial infarction: evaluation with first-pass enhancement and delayed enhancement MR imaging compared with \(^{201}\)T1 SPECT imaging. Radiology 232(1):49–57

    Article  PubMed  Google Scholar 

  16. Hennemuth A, Friman O, Huellebrand M, Peitgen HO (2012) Mixture-model-based segmentation of myocardial delayed enhancement MRI. In: International workshop on statistical atlases and computational models of the heart. Springer, pp 87–96

  17. Grau V (2017) Automated LGE myocardial scar segmentation using MaskSLIC supervoxels-replicating the clinical method. In: Medical image understanding and analysis, vol 723. Springer, p 229

  18. Yang G, Zhuang X, Khan H, Haldar S, Nyktari E, Li L, Wage R, Ye X, Slabaugh G, Mohiaddin R (2018) Fully automatic segmentation and objective assessment of atrial scars for longstanding persistent atrial fibrillation patients using late gadolinium-enhanced MRI. Med Phys 45(4):1562–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li Z, Chen J (2015) Superpixel segmentation using linear spectral clustering. In: IEEE conference on computer vision and pattern recognition, pp 1356–1363

  20. Usta F, Gueaieb W, White JA, Ukwatta E (2018) 3d scar segmentation from LGE-MRI using a continuous max-flow method. In: Medical imaging 2018: biomedical applications in molecular, structural, and functional imaging, international society for optics and photonics, vol 10578, p 105780U

  21. Liu X, Shen Y, Zhao X, Zhang S (2017) Quantized segmentation of fibrotic tissue of left atrial from delay-enhancement MRI images using level-set and graph-cut. In: IEEE international conference on machine vision and information technology, IEEE, pp 23–27

  22. Karim R, Bhagirath P, Claus P, Housden RJ, Chen Z, Karimaghaloo Z, Sohn HM, Rodríguez LL, Vera S, Albà X (2016) Evaluation of state-of-the-art segmentation algorithms for left ventricle infarct from late gadolinium enhancement MR images. Med Image Anal 30:95–107

    Article  PubMed  Google Scholar 

  23. Maier-Hein L, Vedula SS, Speidel S, Navab N, Kikinis R, Park A, Eisenmann M, Feussner H, Forestier G, Giannarou S (2017) Surgical data science for next-generation interventions. Nat Biomed Eng 1(9):691

    Article  PubMed  Google Scholar 

  24. Yang G, Zhuang X, Khan H, Haldar S, Nyktari E, Ye X, Slabaugh G, Wong T, Mohiaddin R, Keegan J et al (2017) Segmenting atrial fibrosis from late gadolinium-enhanced cardiac MRI by deep-learned features with stacked sparse auto-encoders. In: Annual conference on medical image understanding and analysis. Springer, pp 195–206

  25. Zabihollahy F, White JA, Ukwatta E (2018) Myocardial scar segmentation from magnetic resonance images using convolutional neural network. In: Medical imaging 2018, international society for optics and photonics, vol 10575, p 105752Z

  26. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, pp 3431–3440

  27. Moccia S, De Momi E, El Hadji S, Mattos LS (2018) Blood vessel segmentation algorithms—review of methods, datasets and evaluation metrics. Comput Methods Programs Biomed 158:71–91

    Article  PubMed  Google Scholar 

  28. Lau F, Hendriks T, Lieman-Sifry J, Sall S, Golden D (2018) Scargan: chained generative adversarial networks to simulate pathological tissue on cardiovascular MR scans. In: Stoyanov D, Taylor Z, Carneiro G, Syeda-Mahmood T, Martel A, Maier-Hein L, Tavares JMRS (eds) Deep learning in medical image analysis and multimodal learning for clinical decision support. Springer, Cham, pp 343–350

    Chapter  Google Scholar 

  29. Lieman-Sifry J, Le M, Lau F, Sall S, Golden D (2017) Fastventricle: cardiac segmentation with Enet. In: International conference on functional imaging and modeling of the heart. Springer, pp 127–138

  30. Chen J, Yang G, Gao Z, Ni H, Angelini E, Mohiaddin R, Wong T, Zhang Y, Du X, Zhang H et al (2018) Multiview two-task recursive attention model for left atrium and atrial scars segmentation. Springer, Berlin, pp 455–463

    Google Scholar 

  31. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241

  32. Paszke A, Chaurasia A, Kim S, Culurciello E (2016) Enet: a deep neural network architecture for real-time semantic segmentation. arXiv preprint arXiv:160602147

  33. He K, Zhang X, Ren S, Sun J (2016) Identity mappings in deep residual networks. In: European conference on computer vision. Springer, pp 630–645

  34. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: IEEE conference on computer vision and pattern recognition, pp 2818–2826

  35. Xu B, Wang N, Chen T, Li M (2015) Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:150500853

  36. Pedersen SJK (2007) Circular Hough transform. Aalborg Univ Vis Graph Interact Syst 123:123

    Google Scholar 

  37. Ruder S (2016) An overview of gradient descent optimization algorithms. arXiv preprint arXiv:160904747

  38. Kinga D, Adam JB (2015) A method for stochastic optimization. In: International conference on learning representations, vol 5

  39. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117

    Article  PubMed  Google Scholar 

  40. Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):297–302

    Article  Google Scholar 

  41. Sakamoto Y, Ishiguro M, Kitagawa G (1986) Akaike information criterion statistics. D Reidel, Dordrecht, p 81

    Google Scholar 

  42. Vrieze SI (2012) Model selection and psychological theory: a discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychol Methods 17(2):228

    Article  PubMed  PubMed Central  Google Scholar 

  43. Amado LC, Gerber BL, Gupta SN, Rettmann DW, Szarf G, Schock R, Nasir K, Kraitchman DL, Lima JA (2004) Accurate and objective infarct sizing by contrast-enhanced magnetic resonance imaging in a canine myocardial infarction model. J Am Coll Cardiol 44(12):2383–2389

    Article  PubMed  Google Scholar 

  44. Flett AS, Hasleton J, Cook C, Hausenloy D, Quarta G, Ariti C, Muthurangu V, Moon JC (2011) Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance. J Am Coll Cardiol 4(2):150–156

    Article  Google Scholar 

  45. Warfield SK, Zou KH, Wells WM (2004) Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 23(7):903–921

    Article  PubMed  PubMed Central  Google Scholar 

  46. Milletari F, Navab N, Ahmadi SA (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: IEEE fourth international conference on 3D vision, IEEE, pp 565–571

Download references

Author information

Authors and Affiliations

Authors

Contributions

SM: study conception and design/analysis and interpretation of data/drafting of manuscript/Critical revision. RB: acquisition of data/analysis and interpretation of data/critical revision. CM: acquisition of data/analysis and interpretation of data. GM: acquisition of data/analysis and interpretation of data/critical revision. GP: acquisition of data/analysis and interpretation of data/critical revision. MP: acquisition of data/analysis and interpretation of data/critical revision. EGC: study conception and design/analysis and interpretation of data/drafting of manuscript/critical revision.

Corresponding author

Correspondence to Enrico Gianluca Caiani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. For this type of study, formal consent is not required.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moccia, S., Banali, R., Martini, C. et al. Development and testing of a deep learning-based strategy for scar segmentation on CMR-LGE images. Magn Reson Mater Phy 32, 187–195 (2019). https://doi.org/10.1007/s10334-018-0718-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-018-0718-4

Keywords

Navigation