Skip to main content
Log in

Localized semi-LASER dynamic 31P magnetic resonance spectroscopy of the soleus during and following exercise at 7 T

  • Original Paper
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objectives

This study demonstrates the applicability of semi-LASER localized dynamic 31P MRS to deeper lying areas of the exercising human soleus muscle (SOL). The effect of accurate localization and high temporal resolution on data specificity is investigated.

Materials and methods

To achieve high signal-to-noise ratio (SNR) at a temporal resolution of 6 s, a custom-built human calf coil array was used at 7T. The kinetics of phosphocreatine (PCr) and intracellular pH were quantified separately in SOL and gastrocnemius medialis (GM) muscle of nine volunteers, during rest, plantar flexion exercise, and recovery.

Results

The average SNR of PCr at rest was \(64\pm 15\) in SOL (\(83\pm 12\) in GM). End exercise PCr depletion in SOL (\(19\pm 9\) %) was far lower than in GM (\(74\pm 14\) %). The pH in SOL increased rapidly and, in contrast to GM, remained elevated until the end of exercise.

Conclusion

31P MRS in single-shots every 6 s localized in the deeper-lying SOL enabled quantification of PCr recovery times at low depletions and of fast pH changes, like the initial rise. Both high temporal resolution and accurate spatial localization improve specificity of Pi and, thus, pH quantification by avoiding multiple, and potentially indistinguishable sources for changing the Pi peak shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hoult DI, Busby SJ, Gadian DG, Radda GK, Richards RE, Seeley PJ (1974) Observation of tissue metabolites using 31P nuclear magnetic resonance. Nature 252:285–287

    Article  CAS  PubMed  Google Scholar 

  2. Chance B, Im J, Nioka S, Kushmerick M (2006) Skeletal muscle energetics with PNMR: personal views and historic perspectives. NMR Biomed 19:904–926

    Article  PubMed  Google Scholar 

  3. Bendahan D, Giannesini B, Cozzone PJ (2004) Functional investigations of exercising muscle: a noninvasive magnetic resonance spectroscopy-magnetic resonance imaging approach. Cell Mol Life Sci 61:1001–1015

    Article  CAS  PubMed  Google Scholar 

  4. Prompers JJ, Jeneson JA, Drost MR, Oomens CC, Strijkers GJ, Nicolay K (2006) Dynamic MRS and MRI of skeletal muscle function and biomechanics. NMR Biomed 19:927–953

    Article  PubMed  Google Scholar 

  5. Kemp GJ, Meyerspeer M, Moser E (2007) Absolute quantitation of phosphorus metabolite concentrations in human muscle in vivo by 31P MRS: a quantitative review. NMR Biomed 20:555–565

    Article  CAS  PubMed  Google Scholar 

  6. Moon RB, Richards JH (1973) Determination of intracellular pH by 31P MR. J Biol Chem 248:7276–7278

    CAS  PubMed  Google Scholar 

  7. Gray H, Pick TP, Howden R (eds) (1995) Gray’s anatomy, 15th edn. Barnes & Noble Books, New York

    Google Scholar 

  8. Price TB, Kamen G, Damon BM, Knight CA, Applegate B, Gore JC, Eward K, Signorile JF (2003) Comparison of MRI with EMG to study muscle activity associated with dynamic plantar flexion. Magn Reson Imaging 21:853–861

    Article  PubMed  Google Scholar 

  9. Vandenborne K, Walter G, Leigh JS, Goelman G (1993) pH heterogeneity during exercise in localized spectra from single human muscles. Am J Physiol 265:C1332–1339

    CAS  PubMed  Google Scholar 

  10. Noseworthy MD, Bulte DP, Alfonsi J (2003) BOLD magnetic resonance imaging of skeletal muscle. Semin Musculoskelet Radiol 7:307–315

    Article  PubMed  Google Scholar 

  11. Vandenborne K, Walter G, Ploutz-Snyder L, Dudley G, Elliott MA, Meirleir KD (2000) Relationship between muscle T2* relaxation properties and metabolic state: a combined localized 31P-spectroscopy and 1H-imaging study. Eur J Appl Physiol 82:76–82

    Article  CAS  PubMed  Google Scholar 

  12. Jacobi B, Bongartz G, Partovi S, Schulte AC, Aschwanden M, Lumsden AB, Davies MG, Loebe M, Noon GP, Karimi S, Lyo JK, Staub D, Huegli RW, Bilecen D (2012) Skeletal muscle BOLD MRI: from underlying physiological concepts to its usefulness in clinical conditions. J Magn Reson Imaging 35:1253–1265

    Article  PubMed  Google Scholar 

  13. Layec G, Malucelli E, Fur YL, Manners D, Yashiro K, Testa C, Cozzone PJ, Iotti S, Bendahan D (2013) Effects of exercise-induced intracellular acidosis on the phosphocreatine recovery kinetics: a 31P MRS study in three muscle groups in humans. NMR Biomed 26:1403–1411

    Article  CAS  PubMed  Google Scholar 

  14. Forbes SC, Slade JM, Francis RM, Meyer RA (2009) Comparison of oxidative capacity among leg muscles in humans using gated 31P 2-D chemical shift imaging. NMR Biomed 22:1063–1071

    CAS  PubMed  Google Scholar 

  15. Meyerspeer M, Robinson S, Nabuurs CI, Scheenen T, Schoisengeier A, Unger E, Kemp G, Moser E (2012) Comparing localized and nonlocalized dynamic 31P magnetic resonance spectroscopy in exercising muscle at 7T. Magn Reson Med 68:1713–1723

    Article  PubMed Central  PubMed  Google Scholar 

  16. Davis AD, Noseworthy MD (2013) Consistency of post-exercise skeletal muscle BOLD response. In: Proceedings of the 21st scientific meeting, International Society for Magnetic Resonance in Medicine, Salt Lake City, p 1640

  17. Allen PS, Matheson GO, Zhu G, Gheorgiu D, Dunlop RS, Falconer T, Stanley C, Hochachka PW (1997) Simultaneous 31P MRS of the soleus and gastrocnemius in Sherpas during graded calf muscle exercise. Am J Physiol 273:R999–1007

    CAS  PubMed  Google Scholar 

  18. Valkovič L, Chmelík M, Kukurová IJ, Jakubová M, Kipfelsberger MC, Krumpolec P, Jelenc MT, Bogner W, Meyerspeer M, Ukropec J, Frollo I, Ukropcová B, Trattnig S, Krššák M (2014) Depth-resolved surface coil MRS (DRESS)-localized dynamic 31P-MRS of the exercising human gastrocnemius muscle at 7T. NMR Biomed 27:1346–1352

    Article  PubMed  Google Scholar 

  19. Meyerspeer M, Krššák M, Kemp GJ, Roden M, Moser E (2005) Dynamic interleaved 1H/31P STEAM MRS at 3 Tesla using a pneumatic force-controlled plantar flexion exercise rig. Magn Reson Mater Phy 18:257–262

    Article  CAS  Google Scholar 

  20. Meyerspeer M, Scheenen T, Schmid AI, Mandl T, Unger E, Moser E (2011) Semi-LASER-localized dynamic 31P magnetic resonance spectroscopy in exercising muscle at Ultrahigh magnetic field. Magn Reson Med 65:1207–1215

    Article  PubMed Central  PubMed  Google Scholar 

  21. Bogner W, Chmelík M, Schmid AI, Moser E, Trattnig S, Gruber S (2009) Assessment of 31P relaxation times in the human calf muscle: a comparison between 3 T and 7 T in vivo. Magn Reson Med 62:574–582

    Article  CAS  PubMed  Google Scholar 

  22. Parasoglou P, Xia D, Chang G, Regatte RR (2013) Dynamic three-dimensional imaging of phosphocreatine recovery kinetics in the human lower leg muscles at 3T and 7T: a preliminary study. NMR Biomed 26:348–356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Goluch S, Kuehne A, Meyerspeer M, Kriegl R, Schmid AI, Fiedler GB, Herrmann T, Mallow J, Hong SM, Cho ZH, Bernarding J, Moser E, Laistler E (2014) A form-fitted three channel 31P, two channel 1H transceiver coil array for calf muscle studies at 7T. Magn Reson Med. doi:10.1002/mrm.25339

  24. Scheenen TW, Heerschap A, Klomp DW (2008) Towards 1H-MRSI of the human brain at 7T with slice-selective adiabatic refocusing pulses. Magn Reson Mater Phy 21:95–101

    Article  CAS  Google Scholar 

  25. Naressi A, Couturier C, Devos JM, Janssen M, Mangeat C, de Beer R, Graveron-Demilly D (2001) Java-based graphical user interface for the MRUI quantitation package. Magn Reson Mater Phy 12:141–152

    Article  CAS  Google Scholar 

  26. Vanhamme L, van den Boogaart A, van Huffel S (1997) Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 129:35–43

    Article  CAS  PubMed  Google Scholar 

  27. Kemp GJ, Radda GK (1994) Quantitative interpretation of bioenergetic data from 31P and 1H magnetic resonance spectroscopic studies of skeletal muscle: an analytical review. Magn Reson Q 10:43–63

    CAS  PubMed  Google Scholar 

  28. Schmid AI, Schewzow K, Fiedler GB, Goluch S, Laistler E, Wolzt M, Moser E, Meyerspeer M (2014) Exercising calf muscle \({T_{2}^{*}}\) changes correlate with pH, PCr recovery and maximum oxidative phosphorylation. NMR Biomed 27:553–560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Schewzow K, Fiedler GB, Meyerspeer M, Goluch S, Laistler E, Wolzt M, Moser E, Schmid AI (2015) Dynamic ASL and \({T_{2}^{*}}\)-weighted MRI in exercising calf muscle at 7 T—a feasibility study. Magn Reson Med 73:1190–1195

    Article  PubMed  Google Scholar 

  30. Iotti S, Lodi R, Frassineti C, Zaniol P, Barbiroli B (1993) In vivo assessment of mitochondrial functionality in human gastrocnemius muscle by 31P MRS. The role of pH in the evaluation of phosphocreatine and inorganic phosphate recoveries from exercise. NMR Biomed 6:248–253

    Article  CAS  PubMed  Google Scholar 

  31. Kemp GJ, Radda GK, Taylor DJ (1993) Control of phosphocreatine resynthesis during recovery from exercise in human skeletal muscle. NMR Biomed 6:66–72

    Article  CAS  PubMed  Google Scholar 

  32. Hoff E, Brechtel L, Strube P, Konstanczak P, Stoltenburg-Didinger G, Perka C, Putzier M (2013) Noninvasive monitoring of training induced muscle adaptation with 31P-MRS: fibre type shifts correlate with metabolic changes. Biomed Res Int. doi:10.1155/2013/417901

  33. Baligand C, Wary C, Ménard JC, Giacomini E, Hogrel JY, Carlier PG (2011) Measuring perfusion and bioenergetics simultaneously in mouse skeletal muscle: a multiparametric functional-NMR approach. NMR Biomed 24:281–290

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Austrian BMWFJ, FFG Project #832107, “Vienna Research Studio for Ultra-High Field Magnetic Resonance Applications,” Austrian Science Fund (FWF): J 3031-N20, I 1743-B13, and an unrestricted grant to Ewald Moser funded by Siemens Medical.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The study has been approved by the local ethics committee and has, therefore, been performed in accordance with the ethical standards of the 1964 Declaration of Helsinki and its later amendments. All subjects gave informed consent in writing before being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Meyerspeer.

Additional information

Georg B. Fiedler and Martin Meyerspeer are equal contributors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiedler, G.B., Meyerspeer, M., Schmid, A.I. et al. Localized semi-LASER dynamic 31P magnetic resonance spectroscopy of the soleus during and following exercise at 7 T. Magn Reson Mater Phy 28, 493–501 (2015). https://doi.org/10.1007/s10334-015-0484-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-015-0484-5

Keywords

Navigation