Skip to main content
Log in

Ultra-high field MRI for primate imaging using the travelling-wave concept

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object

Ultra-high field (UHF) neuroimaging is usually conducted with volume transmit (Tx) and phased array receive (Rx) coils, both tightly enclosing the object. The travelling-wave (TW) concept allows a remote excitation offering more flexible experimental setups. To investigate the feasibility of primate MRI in horizontal UHF MRI, we first compared the distribution of the electromagnetic fields in an oil phantom and then verified the concept with an in vivo experiment.

Materials and methods

In the phantom experiments an in-house circularly polarized hybrid birdcage coil and a self-developed patch antenna were used for Tx and an eight-element phased array antenna for Rx. B +1 fields were calculated and measured for both approaches. For in vivo experiments the Rx part was replaced with an optimized three-element phased array head coil. The SAR was calculated using field simulation.

Results

In the phantom the field distribution was homogenous in a central volume of interest of about 10 cm diameter. The TW concept showed a slightly better homogeneity. Examination of a female crab-eating macaque led to homogeneous high-contrast images with a good delineation of anatomical details.

Conclusion

The TW concept opens up a new approach for MRI of medium-sized animals in horizontal UHF scanners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brunner DO, de Zanche N, Fröhlich J, Paska J, Pruessmann KP (2009) Travelling-wave nuclear magnetic resonance. Nature 457(7232):994–998

    Article  PubMed  CAS  Google Scholar 

  2. Adriany G, van de Moortele P, Wiesinger F, Moeller S, Strupp JP, Andersen P, Snyder C, Zhang X, Chen W, Pruessmann KP, Boesiger P, Vaughan T, Uğurbil K (2005) Transmit and receive transmission line arrays for 7 Tesla parallel imaging. Magn Reson Med 53(2):434–445

    Article  PubMed  Google Scholar 

  3. Vaughan J, Adriany G, Snyder C, Tian J, Thiel T, Bolinger L, Liu H, DelaBarre L, Ugurbil K (2004) Efficient high-frequency body coil for high-field MRI. Magn Reson Med 52(4):851–859

    Article  PubMed  CAS  Google Scholar 

  4. Mispelter J, Lupu M, Briguet A (2006) NMR probeheads for biophysical and biomedical experiments. Imperial College Press, London

    Google Scholar 

  5. Staelin DH, Morgenthaler AW, Kong JA (1994) Electromagnetic waves. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  6. Liu W, Collins CM, Delp PJ, Smith MB (2004) Effects of end-ring/shield configuration on homogeneity and signal-to-noise ratio in a birdcage-type coil loaded with a human head. Magn Reson Med 51(1):217–221

    Article  PubMed  Google Scholar 

  7. Herrmann T, Mallow J, Kim K, Stadler J, Bernarding J (2011) Travelling-wave for improved excitation of whole body 7T MRI with an extended RF-shield of 1.58 m length and diameter of 0.64 m. In: Proceedings of the ISMRM joint scientific meeting. Montréal, Canada, p 4154

  8. CST AG (2011) Microwave Studio 2011. Darmstadt

  9. Ibrahim TS, Lee R, Baertlein BA, Abduljalil AM, Zhu H, Robitaille PM (2001) Effect of RF coil excitation on field inhomogeneity at ultra high fields: a field optimized TEM resonator. Magn Reson Imaging 19(10):1339–1347

    Article  PubMed  CAS  Google Scholar 

  10. Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM (1990) The NMR phased array. Magn Reson Med 16(2):192–225

    Article  PubMed  CAS  Google Scholar 

  11. Akoka S, Franconi F, Seguin F, Le Pape A (1993) Radiofrequency map of an NMR coil by imaging. Magn Reson Imaging 11(3):437–441

    Article  PubMed  CAS  Google Scholar 

  12. Setsompop K, Alagappan V, Gagoski B, Witzel T, Polimeni J, Potthast A, Hebrank F, Fontius U, Schmitt F, Wald LL, Adalsteinsson E (2008) Slice-selective RF pulses for in vivo B 1 + inhomogeneity mitigation at 7 tesla using parallel RF excitation with a 16-element coil. Magn Reson Med 60(6):1422–1432

    Article  PubMed  Google Scholar 

  13. Henning J (1988) Multiecho imaging sequences with low refocusing flip angles. J Magn Reson 78:397–407

    Google Scholar 

  14. IEC 601-2-33 Ed. 3.0 (2010) Medical electrical equipment—part 2-33 particular requirements for the safety of magnetic resonance equipment for medical diagnosis

  15. Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues. II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41:2251–2269

    Article  PubMed  CAS  Google Scholar 

  16. Lei T, Udupa JK (2003) Gibbs ringing artifact and spatial correlation in MRI. In: Proceedings of SPIE

  17. Alt S, Müller M, Umathum R, Bolz A, Bachert P, Semmler W, Bock M (2012) Coaxial waveguide MRI. Magn Reson Med 67(4):1173–1182

    Article  PubMed  Google Scholar 

  18. Brunner DO, Paska J, Froehlich J, Pruessmann KP (2011) Traveling-wave RF shimming and parallel MRI. Magn Reson Med 66:290–300

    Article  PubMed  Google Scholar 

  19. Baertlein BA, Ozbay O, Ibrahim T, Lee R, Yu Y, Kangarlu A, Robitaille PM (2000) Theoretical model for an MRI radio frequency resonator. IEEE Trans Biomed Eng 47(4):535–546

    Article  PubMed  CAS  Google Scholar 

  20. Erni D, Liebig T, Rennings A, Koster NHL, Fröhlich J (2011) Highly adaptive RF excitation scheme based on conformal resonant CRLH metamaterial ring antennas for 7-Tesla traveling-wave magnetic resonance imaging. Conf Proc IEEE Eng Med Biol Soc 2011:554–558

    PubMed  Google Scholar 

  21. Goense J, Logothetis NK, Merkle H (2010) Flexible, phase-matched, linear receive arrays for high-field MRI in monkeys. Magn Reson Imaging 28(8):1183–1191

    Article  PubMed  Google Scholar 

  22. Collin RE (1991) Field theory of guided waves. IEEE Press, New York

    Google Scholar 

Download references

Acknowledgments

The authors thank Dirk Salbert and Juergen Kanstorf for their technical advices in the construction of the designed RF transmitter and Hans-Peter Fautz from SIEMENS for providing us with his B 1 flip angle mapping sequence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Herrmann.

Additional information

Johannes Mallow and Tim Herrmann contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallow, J., Herrmann, T., Kim, KN. et al. Ultra-high field MRI for primate imaging using the travelling-wave concept. Magn Reson Mater Phy 26, 389–400 (2013). https://doi.org/10.1007/s10334-012-0358-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-012-0358-z

Keywords

Navigation