Skip to main content

Advertisement

Log in

Graph theoretical analysis of structural and functional connectivity MRI in normal and pathological brain networks

  • Review
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Graph theoretical analysis of structural and functional connectivity MRI data (ie. diffusion tractography or cortical volume correlation and resting-state or task-related (effective) fMRI, respectively) has provided new measures of human brain organization in vivo. The most striking discovery is that the whole-brain network exhibits “small-world” properties shared with many other complex systems (social, technological, information, biological). This topology allows a high efficiency at different spatial and temporal scale with a very low wiring and energy cost. Its modular organization also allows for a high level of adaptation. In addition, degree distribution of brain networks demonstrates highly connected hubs that are crucial for the whole-network functioning. Many of these hubs have been identified in regions previously defined as belonging to the default-mode network (potentially explaining the high basal metabolism of this network) and the attentional networks. This could explain the crucial role of these hub regions in physiology (task-related fMRI data) as well as in pathophysiology. Indeed, such topological definition provides a reliable framework for predicting behavioral consequences of focal or multifocal lesions such as stroke, tumors or multiple sclerosis. It also brings new insights into a better understanding of pathophysiology of many neurological or psychiatric diseases affecting specific local or global brain networks such as epilepsy, Alzheimer’s disease or schizophrenia. Graph theoretical analysis of connectivity MRI data provides an outstanding framework to merge anatomical and functional data in order to better understand brain pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramnani N, Behrens TE, Penny W, Matthews PM (2004) New approaches for exploring anatomical and functional connectivity in the human brain. Biol Psychiatry 56: 613–619

    Article  PubMed  Google Scholar 

  2. Ioannidesa A (2007) Dynamic functional connectivity. Curr Opin Neurobiol 17: 161–170

    Article  CAS  Google Scholar 

  3. Rykhlevskaia E, Gratton G, Fabiani M (2008) Combining structural and functional neuroimaging data for studying brain connectivity: a review. Psychophysiology 45: 173–187

    Article  PubMed  Google Scholar 

  4. Guye M, Bartolomei F, Ranjeva JP (2008) Imaging structural and functional connectivity: towards a unified definition of human brain organization?. Curr Opin Neurol 21: 393–403

    Article  PubMed  Google Scholar 

  5. Damoiseaux JS, Greicius MD (2009) Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct Funct

  6. Johansen-Berg H, Rushworth MF (2009) Using diffusion imaging to study human connectional anatomy. Annu Rev Neurosci 32: 75–94

    Article  CAS  PubMed  Google Scholar 

  7. Lerch JP, Worsley K, Shaw WP, Greenstein DK, Lenroot RK, Giedd J, Evansa C (2006) Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI. Neuroimage 31: 993–1003

    Article  PubMed  Google Scholar 

  8. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8: 700–711

    Article  CAS  PubMed  Google Scholar 

  9. Auer DP (2008) Spontaneous low-frequency blood oxygenation level-dependent fluctuations and functional connectivity analysis of the ‘resting’ brain. Magn Reson Imaging 26: 1055–1064

    Article  PubMed  Google Scholar 

  10. Koch MA, Norris DG, Hund-Georgiadis M (2002) An investigation of functional and anatomical connectivity using magnetic resonance imaging. Neuroimage 16: 241–250

    Article  PubMed  Google Scholar 

  11. Hamandi K, Powell HW, Laufs H, Symms MR, Barker GJ, Parker GJ, Lemieux L, Duncan JS (2008) Combined EEG-fMRI and tractography to visualise propagation of epileptic activity. J Neurol Neurosurg Psychiatry 79: 594–597

    Article  CAS  PubMed  Google Scholar 

  12. Cohena L, Fair DA, Dosenbach NU, Miezin FM, Dierker D, Van Essen DC, Schlaggar BL, Petersen SE (2008) Defining functional areas in individual human brains using resting functional connectivity MRI. Neuroimage 41: 45–57

    Article  Google Scholar 

  13. Lowe MJ, Beall EB, Sakaie KE, Koenig KA, Stone L, Marrie RA, Phillips MD (2008) Resting state sensorimotor functional connectivity in multiple sclerosis inversely correlates with transcallosal motor pathway transverse diffusivity. Hum Brain Mapp 29: 818–827

    Article  PubMed  Google Scholar 

  14. Van Den Heuvel M, Mandl R, Luigjes J, Hulshoff Pol H (2008) Microstructural organization of the cingulum tract and the level of default mode functional connectivity. J Neurosci 28: 10844–10851

    Article  CAS  PubMed  Google Scholar 

  15. Van Den Heuvel MP, Mandl RC, Kahn RS, Hulshoff Pol HE (2009) Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp

  16. Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, Hagmann P (2009) Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci USA 106: 2035–2040

    Article  CAS  PubMed  Google Scholar 

  17. Greicius MD, Supekar K, Menon V, Dougherty RF (2009) Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 19: 72–78

    Article  PubMed  Google Scholar 

  18. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6: e159

    Article  PubMed  CAS  Google Scholar 

  19. Skudlarski P, Jagannathan K, Calhoun VD, Hampson M, Skudlarska BA, Pearlson G (2008) Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations. Neuroimage 43: 554–561

    Article  PubMed  Google Scholar 

  20. Reijneveld JC, Ponten SC, Berendse HW, Stam CJ (2007) The application of graph theoretical analysis to complex networks in the brain. Clin Neurophysiol 118: 2317–2331

    Article  PubMed  Google Scholar 

  21. Bullmore E, Barnes A, Bassett DS, Fornito A, Kitzbichler M, Meunier D, Suckling J (2009) Generic aspects of complexity in brain imaging data and other biological systems. Neuroimage 47: 1125–1134

    Article  PubMed  Google Scholar 

  22. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10: 186–198

    Article  CAS  PubMed  Google Scholar 

  23. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393: 440–442

    Article  CAS  PubMed  Google Scholar 

  24. Humphries MD, Gurney K, Prescott TJ (2006) The brainstem reticular formation is a small-world, not scale-free, network. Proc Biol Sci 273: 503–511

    Article  CAS  PubMed  Google Scholar 

  25. Humphries MD, Gurney K (2008) Network ‘small-world-ness’: a quantitative method for determining canonical network equivalence. PLoS One 3: e0002051

    Article  PubMed  CAS  Google Scholar 

  26. Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87: 198701

    Article  CAS  PubMed  Google Scholar 

  27. Wasserman S, Faust K (1994) Social network analysis. Cambridge University Press, Cambridge

    Google Scholar 

  28. Adamic LA (1999) The small world web. Res Adv Tech Digit Libr Proc 1696: 443–452

    Article  Google Scholar 

  29. Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286: 509–512

    Article  PubMed  Google Scholar 

  30. Sporns O, Honey CJ, Kotter R (2007) Identification and classification of hubs in brain networks. PLoS One 2: e1049

    Article  PubMed  Google Scholar 

  31. Fair DA, Cohen AL, Power JD, Dosenbach NUF, Church JA et al (2009) Functional brain networks develop from a “local to distributed” organization. PLoS Comput Biol 5(5): e1000381

    Article  PubMed  CAS  Google Scholar 

  32. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26: 63–72

    Article  CAS  PubMed  Google Scholar 

  33. Albert R, Jeong H, Barabasia L (2000) Error and attack tolerance of complex networks. Nature 406: 378–382

    Article  CAS  PubMed  Google Scholar 

  34. Stam CJ, de Haan W, Daffertshofer A, Jones BF, Manshanden I, van Cappellen van Walsum AM, Montez T, Verbunt JPA, de Munck JC, Dijk BW, Berendse HW, Scheltens P (2008) Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain 132: 213–224

    Article  PubMed  Google Scholar 

  35. Kaiser M, Martin R, Andras P, Young MP (2007) Simulation of robustness against lesions of cortical networks. Eur J Neurosci 25: 3185–3192

    Article  PubMed  Google Scholar 

  36. Honey CJ, Sporns O (2008) Dynamical consequences of lesions in cortical networks. Hum Brain Mapp 29: 802–809

    Article  PubMed  Google Scholar 

  37. Newman ME (2006) Modularity and community structure in networks. Proc Natl Acad Sci USA 103: 8577–8582

    Article  CAS  PubMed  Google Scholar 

  38. Ravasz E, Barabasia L (2003) Hierarchical organization in complex networks. Phys Rev E Stat Nonlin Soft Matter Phys 67: 026112

    Article  PubMed  CAS  Google Scholar 

  39. Sporns O, Tononi G, Edelman GM (2000) Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb Cortex 10: 127–141

    Article  CAS  PubMed  Google Scholar 

  40. Hilgetag CC, Burns GA, O’neill MA, Scannell JW, Young MP (2000) Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. Philos Trans R Soc Lond B Biol Sci 355: 91–110

    Article  CAS  PubMed  Google Scholar 

  41. Iturria-Medina Y, Canales-Rodriguez EJ, Melie-Garcia L, Valdes-Hernandez PA, Martinez-Montes E, Aleman-Gomez Y, Sanchez-Bornot JM (2007) Characterizing brain anatomical connections using diffusion weighted MRI and graph theory. Neuroimage 36: 645–660

    Article  CAS  PubMed  Google Scholar 

  42. Iturria-Medina Y, Sotero RC, Canales-Rodriguez EJ, Aleman-Gomez Y, Melie-Garcia L (2008) Studying the human brain anatomical network via diffusion-weighted MRI and graph theory. Neuroimage 40: 1064–1076

    Article  PubMed  Google Scholar 

  43. Gong G, He Y, Concha L, Lebel C, Gross DW, Evansa C, Beaulieu C (2009) Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb Cortex 19: 524–536

    Article  PubMed  Google Scholar 

  44. Hagmann P, Kurant M, Gigandet X, Thiran P, Wedeen VJ, Meuli R, Thiran JP (2007) Mapping human whole-brain structural networks with diffusion MRI. PLoS One 2: e597

    Article  PubMed  Google Scholar 

  45. He Y, Chen ZJ, Evansa C (2007) Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex 17: 2407–2419

    Article  PubMed  Google Scholar 

  46. Chen ZJ, He Y, Rosa-Neto P, Germann J, Evansa C (2008) Revealing modular architecture of human brain structural networks by using cortical thickness from MRI. Cereb Cortex 18: 2374–2381

    Article  PubMed  Google Scholar 

  47. Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A (2008) Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 28: 9239–9248

    Article  CAS  PubMed  Google Scholar 

  48. Schmitt JE, Lenroot RK, Wallace GL, Ordaz S, Taylor KN, Kabani N, Greenstein D, Lerch JP, Kendler KS, Neale MC et al (2008) Identification of genetically mediated cortical networks: a multivariate study of pediatric twins and siblings. Cereb Cortex 18: 1737–1747

    Article  CAS  PubMed  Google Scholar 

  49. Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, Andrews-Hanna JR, Sperling RA, Johnson KA (2009) Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci 29: 1860–1873

    Article  CAS  PubMed  Google Scholar 

  50. Friston KJ, Frith CD, Liddle PF, Frackowiak RS (1993) Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab 13: 5–14

    CAS  PubMed  Google Scholar 

  51. Friston K (2002) Beyond phrenology: what can neuroimaging tell us about distributed circuitry?. Annu Rev Neurosci 25: 221–250

    Article  CAS  PubMed  Google Scholar 

  52. Stam CJ, Reijneveld JC (2007) Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed Phys 1: 3

    Article  PubMed  Google Scholar 

  53. Bassett DS, Bullmore E (2006) Small-world brain networks. Neuroscientist 12: 512–523

    Article  PubMed  Google Scholar 

  54. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34: 537–541

    Article  CAS  PubMed  Google Scholar 

  55. Fox MD, Snydera Z, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102: 9673–9678

    Article  CAS  PubMed  Google Scholar 

  56. Fransson P (2005) Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp 26: 15–29

    Article  PubMed  Google Scholar 

  57. Friston K (2009) Causal modelling and brain connectivity in functional magnetic resonance imaging. PLoS Biol 7: e33

    Article  PubMed  CAS  Google Scholar 

  58. Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional networks. PLoS Comput Biol 3: e17

    Article  PubMed  CAS  Google Scholar 

  59. Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E (2005) Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 15: 1332–1342

    Article  PubMed  Google Scholar 

  60. Eguiluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkariana V (2005) Scale-free brain functional networks. Phys Rev Lett 94: 018102

    Article  PubMed  CAS  Google Scholar 

  61. Van Den Heuvel MP, Stam CJ, Boersma M, Hulshoff Pol HE (2008) Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. Neuroimage 43: 528–539

    Article  CAS  PubMed  Google Scholar 

  62. Ferrarini L, Veer IM, Baerends E, Van Tol MJ, Renken RJ, Van Der Wee NJ, Veltman DJ, Aleman A, Zitman FG, Penninx BW et al (2009) Hierarchical functional modularity in the resting-state human brain. Hum Brain Mapp 30: 2220–2231

    Article  PubMed  Google Scholar 

  63. Meunier D, Achard S, Morcom A, Bullmore E (2009) Age-related changes in modular organization of human brain functional networks. Neuroimage 44: 715–723

    Article  PubMed  Google Scholar 

  64. He Y, Wang J, Wang L, Chen ZJ, Yan C, Yang H, Tang H, Zhu C, Gong Q, Zang Y et al (2009) Uncovering intrinsic modular organization of spontaneous brain activity in humans. PLoS One 4: e5226

    Article  PubMed  CAS  Google Scholar 

  65. He BJ, Shulman GL, Snydera Z, Corbetta M (2007) The role of impaired neuronal communication in neurological disorders. Curr Opin Neurol 20: 655–660

    Article  PubMed  Google Scholar 

  66. Hoffmann M, Schmitt F, Bromley E (2009) Vascular cognitive syndromes: relation to stroke etiology and topography. Acta Neurol Scand

  67. Winter B, Bert B, Fink H, Dirnagl U, Endres M (2004) Dysexecutive syndrome after mild cerebral ischemia? Mice learn normally but have deficits in strategy switching. Stroke 35: 191–195

    Article  PubMed  Google Scholar 

  68. Lim C, Alexander MP (2009) Stroke and episodic memory disorders. Neuropsychologia

  69. He BJ, Snydera Z, Vincent JL, Epstein A, Shulman GL, Corbetta M (2007) Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron 53: 905–918

    Article  CAS  PubMed  Google Scholar 

  70. Grefkes C, Nowak DA, Eickhoff SB, Dafotakis M, Kust J, Karbe H, Fink GR (2008) Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann Neurol 63: 236–246

    Article  PubMed  Google Scholar 

  71. Bartolomei F, Bosma I, Klein M, Baayen JC, Reijneveld JC, Postma TJ, Heimans JJ, Van Dijk BW, De Munck JC, De Jongh A et al (2006) Disturbed functional connectivity in brain tumour patients: evaluation by graph analysis of synchronization matrices. Clin Neurophysiol 117: 2039–2049

    Article  PubMed  Google Scholar 

  72. Alstott J, Breakspear M, Hagmann P, Cammoun L, Sporns O (2009) Modeling the impact of lesions in the human brain. PLoS Comput Biol 5: e1000408

    Article  PubMed  CAS  Google Scholar 

  73. He Y, Dagher A, Chen Z, Charil A, Zijdenbos A, Worsley K, Evans A (2009) Impaired small-world efficiency in structural cortical networks in multiple sclerosis associated with white matter lesion load. Brain

  74. Reuter F, Del Cul A, Malikova I, Naccache L, Confort-Gouny S, Cohen L, Cherifa A, Cozzone PJ, Pelletier J, Ranjeva JP et al (2009) White matter damage impairs access to consciousness in multiple sclerosis. Neuroimage 44: 590–599

    Article  PubMed  Google Scholar 

  75. Audoin B, Guye M, Reuter F, Au Duong MV, Confort-Gouny S, Malikova I, Soulier E, Viout P, Cherifa A, Cozzone PJ et al (2007) Structure of WM bundles constituting the working memory system in early multiple sclerosis: a quantitative DTI tractography study. Neuroimage 36: 1324–1330

    Article  PubMed  Google Scholar 

  76. Audoin B, Ibarrola D, Au Duong MV, Pelletier J, Confort-Gouny S, Malikova I, Ali-Cherif A, Cozzone PJ, Ranjeva JP (2005) Functional MRI study of PASAT in normal subjects. MAGMA 18: 96–102

    Article  CAS  PubMed  Google Scholar 

  77. Au Duong MV, Audoin B, Boulanouar K, Ibarrola D, Malikova I, Confort-Gouny S, Celsis P, Pelletier J, Cozzone PJ, Ranjeva JP (2005) Altered functional connectivity related to white matter changes inside the working memory network at the very early stage of MS. J Cereb Blood Flow Metab 25: 1245–1253

    Article  PubMed  Google Scholar 

  78. Au Duong MV, Boulanouar K, Audoin B, Treseras S, Ibarrola D, Malikova I, Confort-Gouny S, Celsis P, Pelletier J, Cozzone PJ et al (2005) Modulation of effective connectivity inside the working memory network in patients at the earliest stage of multiple sclerosis. Neuroimage 24: 533–538

    Article  CAS  PubMed  Google Scholar 

  79. Ranjeva JP, Audoin B, Au Duong MV, Confort-Gouny S, Malikova I, Viout P, Soulier E, Pelletier J, Cozzone PJ (2006) Structural and functional surrogates of cognitive impairment at the very early stage of multiple sclerosis. J Neurol Sci 245: 161–167

    Article  PubMed  Google Scholar 

  80. Braak H, Braak E (1997) Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18: 351–357

    Article  CAS  PubMed  Google Scholar 

  81. Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD (2009) Neurodegenerative diseases target large-scale human brain networks. Neuron 62: 42–52

    Article  CAS  PubMed  Google Scholar 

  82. Supekar K, Menon V, Rubin D, Musen M, Greicius MD (2008) Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput Biol 4: e1000100

    Article  PubMed  CAS  Google Scholar 

  83. He Y, Chen Z, Evans A (2008) Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease. J Neurosci 28: 4756–4766

    Article  CAS  PubMed  Google Scholar 

  84. Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens P (2007) Small-world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex 17: 92–99

    Article  CAS  PubMed  Google Scholar 

  85. Karlsgodt KH, Sun D, Jimeneza M, Lutkenhoff ES, Willhite R, Van Erp TG, Cannon TD (2008) Developmental disruptions in neural connectivity in the pathophysiology of schizophrenia. Dev Psychopathol 20: 1297–1327

    Article  PubMed  Google Scholar 

  86. Begre S, Koenig T (2008) Cerebral disconnectivity: an early event in schizophrenia. Neuroscientist 14: 19–45

    Article  CAS  PubMed  Google Scholar 

  87. Jeong B, Wible CG, Hashimoto RI, Kubicki M (2009) Functional and anatomical connectivity abnormalities in left inferior frontal gyrus in schizophrenia. Hum Brain Mapp

  88. Oh JS, Kubicki M, Rosenberger G, Bouix S, Levitt JJ, Mccarley RW, Westin CF, Shenton ME (2009) Thalamo-frontal white matter alterations in chronic schizophrenia: a quantitative diffusion tractography study. Hum Brain Mapp

  89. Greicius M (2008) Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol 21: 424–430

    Article  PubMed  Google Scholar 

  90. Liu Y, Liang M, Zhou Y, He Y, Hao Y, Song M, Yu C, Liu H, Liu Z, Jiang T (2008) Disrupted small-world networks in schizophrenia. Brain 131: 945–961

    Article  PubMed  Google Scholar 

  91. Micheloyannis S, Pachou E, Stam CJ, Breakspear M, Bitsios P, Vourkas M, Erimaki S, Zervakis M (2006) Small-world networks and disturbed functional connectivity in schizophrenia. Schizophr Res 87: 60–66

    Article  PubMed  Google Scholar 

  92. Rubinov M, Knock SA, Stam CJ, Micheloyannis S, Harrisa W, Williams LM, Breakspear M (2009) Small-world properties of nonlinear brain activity in schizophrenia. Hum Brain Mapp 30: 403–416

    Article  PubMed  Google Scholar 

  93. Noonan SK, Haist F, Muller RA (2009) Aberrant functional connectivity in autism: evidence from low-frequency BOLD signal fluctuations. Brain Res 1262: 48–63

    Article  CAS  PubMed  Google Scholar 

  94. Monk CS, Peltier SJ, Wiggins JL, Weng SJ, Carrasco M, Risi S, Lord C (2009) Abnormalities of intrinsic functional connectivity in autism spectrum disorders. Neuroimage 47: 764–772

    Article  PubMed  Google Scholar 

  95. Supekar K, Musen M, Menon V (2009) Development of large-scale functional brain networks in children. PLoS Biol 7: e1000157

    Article  PubMed  CAS  Google Scholar 

  96. Wang L, Zhu C, He Y, Zang Y, Cao Q, Zhang H, Zhong Q, Wang Y (2009) Altered small-world brain functional networks in children with attention-deficit/hyperactivity disorder. Hum Brain Mapp 30: 638–649

    Article  CAS  PubMed  Google Scholar 

  97. Wendling F, Bartolomei F, Bellanger JJ, Bourien J, Chauvel P (2003) Epileptic fast intracerebral EEG activity: evidence for spatial decorrelation at seizure onset. Brain 126: 1449–1459

    Article  CAS  PubMed  Google Scholar 

  98. Guye M, Regis J, Tamura M, Wendling F, Mcgonigal A, Chauvel P, Bartolomei F (2006) The role of corticothalamic coupling in human temporal lobe epilepsy. Brain 129: 1917–1928

    Article  PubMed  Google Scholar 

  99. Bartolomei F, Chauvel P, Wendling F (2008) Epileptogenicity of brain structures in human temporal lobe epilepsy: a quantified study from intracerebral EEG. Brain 131: 1818–1830

    Article  PubMed  Google Scholar 

  100. Arthuis M, Valton L, Regis J, Chauvel P, Wendling F, Naccache L, Bernard C, Bartolomei F (2009) Impaired consciousness during temporal lobe seizures is related to increased long-distance cortical-subcortical synchronization. Brain 132: 2091–2101

    Article  PubMed  Google Scholar 

  101. Ahmadi ME, Hagler DJ Jr, Mcdonald CR, Tecoma ES, Iragui VJ, Dalea M, Halgren E (2009) Side matters: diffusion tensor imaging tractography in left and right temporal lobe epilepsy. AJNR Am J Neuroradiol

  102. Yogarajah M, Focke NK, Bonelli S, Cercignani M, Acheson J, Parker GJ, Alexander DC, Mcevoya W, Symms MR, Koepp MJ et al (2009) Defining Meyer’s loop-temporal lobe resections, visual field deficits and diffusion tensor tractography. Brain 132: 1656–1668

    Article  CAS  PubMed  Google Scholar 

  103. Yogarajah M, Powell HW, Parker GJ, Alexander DC, Thompson PJ, Symms MR, Boulby P, Wheeler-Kingshott CA, Barker GJ, Koepp MJ et al (2008) Tractography of the parahippocampal gyrus and material specific memory impairment in unilateral temporal lobe epilepsy. Neuroimage 40: 1755–1764

    Article  CAS  PubMed  Google Scholar 

  104. Hagler DJ Jr, Ahmadi ME, Kuperman J, Holland D, Mcdonald CR, Halgren E, Dalea M (2009) Automated white-matter tractography using a probabilistic diffusion tensor atlas: application to temporal lobe epilepsy. Hum Brain Mapp 30: 1535–1547

    Article  PubMed  Google Scholar 

  105. Concha L, Beaulieu C, Gross DW (2005) Bilateral limbic diffusion abnormalities in unilateral temporal lobe epilepsy. Ann Neurol 57: 188–196

    Article  PubMed  Google Scholar 

  106. Concha L, Beaulieu C, Collins DL, Gross DW (2009) White-matter diffusion abnormalities in temporal-lobe epilepsy with and without mesial temporal sclerosis. J Neurol Neurosurg Psychiatry 80: 312–319

    Article  CAS  PubMed  Google Scholar 

  107. Mcdonald CR, Ahmadi ME, Hagler DJ, Tecoma ES, Iragui VJ, Gharapetian L, Dalea M, Halgren E (2008) Diffusion tensor imaging correlates of memory and language impairments in temporal lobe epilepsy. Neurology 71: 1869–1876

    Article  CAS  PubMed  Google Scholar 

  108. Diehl B, Busch RM, Duncan JS, Piao Z, Tkach J, Luders HO (2008) Abnormalities in diffusion tensor imaging of the uncinate fasciculus relate to reduced memory in temporal lobe epilepsy. Epilepsia 49: 1409–1418

    Article  PubMed  Google Scholar 

  109. Powell HW, Parker GJ, Alexander DC, Symms MR, Boulby PA, Wheeler-Kingshott CA, Barker GJ, Koepp MJ, Duncan JS (2007) Abnormalities of language networks in temporal lobe epilepsy. Neuroimage 36: 209–221

    Article  PubMed  Google Scholar 

  110. Rodrigo S, Oppenheim C, Chassoux F, Golestani N, Cointepas Y, Poupon C, Semah F, Mangin JF, Le Bihan D, Meder JF (2007) Uncinate fasciculus fiber tracking in mesial temporal lobe epilepsy. Initial findings. Eur Radiol 17: 1663–1668

    Article  CAS  PubMed  Google Scholar 

  111. Widjaja E, Blaser S, Miller E, Kassner A, Shannon P, Chuang SH, Snead OC 3rd, Raybaud CR (2007) Evaluation of subcortical white matter and deep white matter tracts in malformations of cortical development. Epilepsia 48: 1460–1469

    Article  PubMed  Google Scholar 

  112. Bernhardt BC, Worsley KJ, Besson P, Concha L, Lerch JP, Evansa C, Bernasconi N (2008) Mapping limbic network organization in temporal lobe epilepsy using morphometric correlations: insights on the relation between mesiotemporal connectivity and cortical atrophy. Neuroimage 42: 515–524

    Article  PubMed  Google Scholar 

  113. Waitesa B, Briellmann RS, Saling MM, Abbott DF, Jackson GD (2006) Functional connectivity networks are disrupted in left temporal lobe epilepsy. Ann Neurol 59: 335–343

    Article  Google Scholar 

  114. Addis DR, Moscovitch M, Mcandrews MP (2007) Consequences of hippocampal damage across the autobiographical memory network in left temporal lobe epilepsy. Brain 130: 2327–2342

    Article  PubMed  Google Scholar 

  115. Bettus G, Guedj E, Joyeux F, Confort-Gouny S, Soulier E, Laguitton V, Cozzone PJ, Chauvel P, Ranjeva JP, Bartolomei F et al (2009) Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanisms. Hum Brain Mapp 30: 1580–1591

    Article  PubMed  Google Scholar 

  116. Vaudano E, Laufs H, Kiebel SJ, Carmichael DW, Hamandi K, Guye M, Thornton R, Rodionov R, Friston KJ, Duncan JS et al (2009) Causal hierarchy within the thalamo-cortical network in spike and wave discharges. PLoS One 4: e6475

    Article  PubMed  CAS  Google Scholar 

  117. Ponten SC, Bartolomei F, Stam CJ (2007) Small-world networks and epilepsy: graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures. Clin Neurophysiol 118: 918–927

    Article  CAS  PubMed  Google Scholar 

  118. Ponten SC, Douw L, Bartolomei F, Reijneveld JC, Stam CJ (2009) Indications for network regularization during absence seizures: weighted and unweighted graph theoretical analyses. Exp Neurol 217: 197–204

    Article  CAS  PubMed  Google Scholar 

  119. Kramer MA, Kolaczyk ED, Kirsch HE (2008) Emergent network topology at seizure onset in humans. Epilepsy Res 79: 173–186

    Article  PubMed  Google Scholar 

  120. Schindler KA, Bialonski S, Horstmann MT, Elger CE, Lehnertz K (2008) Evolving functional network properties and synchronizability during human epileptic seizures. Chaos 18: 033119

    Article  PubMed  Google Scholar 

  121. Wang J, Wang L, Zang Y, Yang H, Tang H, Gong Q, Chen Z, Zhu C, He Y (2009) Parcellation-dependent small-world brain functional networks: a resting-state fMRI study. Hum Brain Mapp 30: 1511–1523

    Article  PubMed  Google Scholar 

  122. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15: 273–289

    Article  CAS  PubMed  Google Scholar 

  123. Collins D, Holmes C, Peters T, Evans A (1995) Automatic 3D model-based neuroanatomical segmentation. Hum Brain Mapp 3: 190–208

    Article  Google Scholar 

  124. Fischl B, Van Der Kouwe A, Destrieux C, Halgren E, Segonne F, Salat DH, Busa E, Seidman LJ, Goldstein J, Kennedy D et al (2004) Automatically parcellating the human cerebral cortex. Cereb Cortex 14: 11–22

    Article  PubMed  Google Scholar 

  125. Knock SA, Mcintosha R, Sporns O, Kotter R, Hagmann P, Jirsa VK (2009) The effects of physiologically plausible connectivity structure on local and global dynamics in large scale brain models. J Neurosci Methods 183: 86–94

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Guye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guye, M., Bettus, G., Bartolomei, F. et al. Graph theoretical analysis of structural and functional connectivity MRI in normal and pathological brain networks. Magn Reson Mater Phy 23, 409–421 (2010). https://doi.org/10.1007/s10334-010-0205-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-010-0205-z

Keywords

Navigation