Skip to main content

Advertisement

Log in

Imaging E-selectin expression following traumatic brain injury in the rat using a targeted USPIO contrast agent

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Introduction

The aim of this work was to map E-selectin expression in a traumatic brain injury model using a newly-designed MR contrast agent. Iron cores, responsible for susceptibility effects and therefore used as T2* contrast agents, need to be coated in order to be stabilized and need to be targeted to be useful.

Methods

We have designed a molecule coating composed, at one end, of bisphosphonate to ensure anchorage of the coating on the iron core and, at the other end, of Fukuda’s defined heptapeptide known to target selectin binding sites.

Conclusion

The synthesized nanoparticles were able to non-invasively target the traumatic brain lesion, inducing a specific T2* decrease of about 25% up to at least 70 min post-injection of the targeted contrast agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IL1-β and TNF-α :

Interleukin-1-β and tumor necrosis factor-α

IELLQAR:

Isoleucine-glutamate-leucine-leucine-glutamine-alanine-arginine heptapeptide

BP:

Bisphosphonate

99mTc-BP:

Technetium chelated to bisphosphonate

EG3:

Ethylene glycol block repeated three times

Hd:

Hydrodynamic diameter

ζ :

Zeta potential

e:

Polyelectrolyte accessible layer depth

d q :

Charge density (in C/m3)

RARE:

Rapid acquisition with relaxation enhancement

ADC:

Apparent diffusion coefficient

3DmGE:

3D multi-gradient echos sequence

References

  1. Thurman D, Alverson C, Dunn K, Guerrero J, JE S (1999) Traumatic brain injury in the United States: a public health perspective. J Head Trauma Rehabil 14: 602–615

    Article  PubMed  CAS  Google Scholar 

  2. Kay A, Teasdale G (2001) Head injury in the United Kingdom. World J Surg 25: 1210–1220

    Article  PubMed  CAS  Google Scholar 

  3. Mathe J, Richard I, Rome J (2005) Serious brain injury and public health, epidemiologic and financial considerations, comprehensive management and care. Ann Fr Anesth Reanim 24: 688–694

    PubMed  Google Scholar 

  4. Klatzo I (1987) Pathophysiological aspects of brain edema. Acta Neuropathol (Berl) 72: 236–239

    Article  CAS  Google Scholar 

  5. Kawamata T, Katayama Y, Hovda D, Yoshino A, Becker D (1995) Lactate accumulation following concussive brain injury: the role of ionic fluxes induced by excitatory amino acids. Brain Res 674: 196–204

    Article  PubMed  CAS  Google Scholar 

  6. Reinert M, Khaldi A, Zauner A, Doppenberg E, Choi S, Bullock R (2000) High level of extracellular potassium and its correlates after severe head injury: relationship to high intracranial pressure. J Neurosurg 93: 800–807

    Article  PubMed  CAS  Google Scholar 

  7. Stanimirovic D, Satoh K (2000) Inflammatory mediators of cerebral endothelium: a role in ischemic brain inflammation. Brain Pathol 10: 113–126

    PubMed  CAS  Google Scholar 

  8. Frijns C, Kappelle L (2002) Inflammatory cell adhesion molecules in ischemic cerebrovascular disease. Stroke 33: 2115–2122

    Article  PubMed  CAS  Google Scholar 

  9. Danton G, Dietrich W (2003) Inflammatory mechanisms after ischemia and stroke. J Neuropathol Exp Neurol 62: 127–136

    PubMed  CAS  Google Scholar 

  10. Williams A, Wei H, Dave J, Tortella F (2007) Acute and delayed neuroinflammatory response following experimental penetrating ballistic brain injury in the rat. J Neuroinflammation 4: 17

    Article  PubMed  CAS  Google Scholar 

  11. Wang Q, Tang X, Yenari M (2007) The inflammatory response in stroke. J Neuroimmunol 184: 53–68

    Article  PubMed  CAS  Google Scholar 

  12. McEver R (1997) Selectin–carbohydrate interactions during inflammation and metastasis. Glycoconj J 14: 585–591

    Article  PubMed  CAS  Google Scholar 

  13. Stoolman L (1989) Adhesion molecules controlling lymphocyte migration. Cell 56: 907–910

    Article  PubMed  CAS  Google Scholar 

  14. Phillips M, Nudelman E, Gaeta F, Perez M, Singhal A, Hakomori S, Paulson J (1990) ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-Lex. Science 250: 1130–1132

    Article  PubMed  CAS  Google Scholar 

  15. Ley K (2003) Sulfated sugars for rolling lymphocytes. J Exp Med 198: 1285–1288

    Article  PubMed  CAS  Google Scholar 

  16. Kneuer C, Ehrhardt C, Radomski M, Bakowsky U (2006) Selectins-potential pharmacological targets. Drug Discov Today 11: 1034–1040

    Article  PubMed  CAS  Google Scholar 

  17. Kang H, Josephson L, Petrovsky A, Weissleder R, Bogdanov AJ (2002) Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture. Bioconjug Chem 13: 122–127

    Article  PubMed  CAS  Google Scholar 

  18. Sibson N, Blamire A, Bernades-Silva M, Laurent S, Boutry S, Muller R, Styles P, Anthony D (2004) MRI detection of early endothelial activation in brain inflammation. Magn Reson Med 51: 248–252

    Article  PubMed  CAS  Google Scholar 

  19. Barber P, Foniok T, Kirk D, Buchan A, Laurent S, Boutry S, Muller R, Hoyte L, Tomanek B, Tuor U (2004) MR molecular imaging of early endothelial activation in focal ischemia. Ann Neurol 56: 116–120

    Article  PubMed  CAS  Google Scholar 

  20. Boutry S, Burtea C, Laurent S, Toubeau G, Vander Elst L, Muller R (2005) Magnetic resonance imaging of inflammation with a specific selectin-targeted contrast agent. Magn Reson Med 53: 800–807

    Article  PubMed  CAS  Google Scholar 

  21. Funovics M, Montet X, Reynolds F, Weissleder R, Josephson L (2005) Nanoparticles for the optical imaging of tumor E-selectin. Neoplasia 7: 892–899

    Article  CAS  Google Scholar 

  22. Reynolds P, Larkman D, Haskard D, Hajnal J, Kennea N, George A, Edwards A (2006) Detection of vascular expression of E-selectin in vivo with MR imaging. Radiology 241: 469–476

    Article  PubMed  Google Scholar 

  23. Canet-Soulas E, Letourneur D (2007) Biomarkers of atherosclerosis and the potential of MRI for the diagnosis of vulnerable plaque. Mag Reson Mater Phys 20: 129–142

    Article  CAS  Google Scholar 

  24. Chapman P, Jamar F, Harrison A, Binns R, Peters A, Haskard D (1994) Noninvasive imaging of E-selectin expression by activated endothelium in urate crystal-induced arthritis. Arthritis Rheum 37: 1752–1756

    Article  PubMed  CAS  Google Scholar 

  25. Zinn K, Chaudhuri T, Smyth C, Wu Q, Liu H, Fleck M, Mountz J, Mountz J (1999) Specific targeting of activated endothelium in rat adjuvant arthritis with a 99mTc-radiolabeled E-selectin-binding peptide. Arthritis Rheum 42: 641–649

    Article  PubMed  CAS  Google Scholar 

  26. Runnels J, Zamiri P, Spencer J, Veilleux I, Wei X, Bogdanov A, Lin C (2006) Imaging molecular expression on vascular endothelial cells by in vivo immunofluorescence microscopy. Mol Imaging 5: 31–40

    PubMed  Google Scholar 

  27. Lindner J, Song J, Christiansen J, Klibanov A, Xu F, Ley K (2001) Sound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin. Circulation 104: 2107–2112

    Article  PubMed  CAS  Google Scholar 

  28. Weller G, Villanueva F, Tom E, Wagner W (2003) Targeted ultrasound contrast agents: in vitro assessment of endothelial dysfunction and multi-targeting to ICAM-1 and sialyl Lewisx. Biotechnol Bioeng 92: 780–788

    Article  CAS  Google Scholar 

  29. Ham A, Goetz D, Klibanov A, Lawrence M (2007) Microparticle adhesive dynamics and rolling mediated by selectin-specific antibodies under flow. Biotechnol Bioeng 96: 596–607

    Article  PubMed  CAS  Google Scholar 

  30. Laurent S, Vander Elst L, Fu Y, Muller R (2004) Synthesis and physicochemical characterization of Gd-DTPA-B(sLex)A, a new MRI contrast agent targeted to inflammation. Bioconjug Chem 15: 99–103

    Article  PubMed  CAS  Google Scholar 

  31. Fukuda M, Ohyama C, Lowitz K, Matsuo O, Pasqualini R, Ruoslahti E, Fukuda M (2000) A peptide mimic of E-selectin ligand inhibits sialyl Lewis X-dependent lung colonization of tumor cells. Cancer Res 60: 450–456

    PubMed  CAS  Google Scholar 

  32. Renkonen R, Fukada MN, Petrov L, Paavonen T, Renkonen J, Häyry P, Fukuda M (2002) A peptide mimic of selectin ligands abolishes in vivo inflammation but has no effect on the rat heart allograft survival. Transplantation 74: 2–6

    Article  PubMed  CAS  Google Scholar 

  33. Babes L, Denizot B, Tanguy G, Le Jeune J, Jallet P (1999) Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J Colloid Interface Sci 212: 474–482

    Article  PubMed  CAS  Google Scholar 

  34. Portet D, Denizot B, Rump E, Le Jeune J-J, Jallet P (2001) Nonpolymeric coatings of iron oxide colloids for biological use as magnetic resonance imaging contrast agents. J Colloid Interface Sci 238: 37–42

    Article  PubMed  CAS  Google Scholar 

  35. Mowat P, Franconi F, Chapon C, Lemaire L, Dorat J, Hindre F, Benoit JP, Richomme P, Le Jeune JJ (2007) Evaluating SPIO-labelled cell MR efficiency by three-dimensional quantitative T2* MRI. NMR Biomed 20: 21–27

    Article  PubMed  CAS  Google Scholar 

  36. Ohshima H (2000) On the general expression for the electrophoretic mobility of a soft particle. J Colloid Interface Sci 228: 190–193

    Article  PubMed  CAS  Google Scholar 

  37. Vonarbourg A, Saulnier P, Passirani C, Benoit JP (2005) Electrokinetic properties of noncharged lipid nanocapsules: influence of the dipolar distribution at the interface. Electrophoresis 26: 2066–2075

    Article  PubMed  CAS  Google Scholar 

  38. Stejskal E, Tanner J (1965) Spin diffusion measurements: spin-echoes in the presence of a time-dependent field gradient. J Chem Phys 42: 288–292

    Article  CAS  Google Scholar 

  39. Van Putten H, Bouwhuis M, Muizelaar J, Lyeth B, Berman R (2005) Diffusion-weighted imaging of edema following traumatic brain injury in rats: effects of secondary hypoxia. J Neurotrauma 22: 857–872

    Article  PubMed  Google Scholar 

  40. Lythgoe M, Busza A, Calamante F, Sotak C, King M, Bingham A, Williams S, Gadian D (1997) Effects of diffusion anisotropy on lesion delineation in a rat model of cerebral ischemia. Magn Reson Med 38: 662–668

    Article  PubMed  CAS  Google Scholar 

  41. Franconi F, Mowat P, Lemaire L, Richomme P, Le Jeune JJ (2006) Single-scan quantitative T2* methods with susceptibility artifact reduction. NMR Biomed 19: 527–534

    Article  PubMed  Google Scholar 

  42. Springer TA (1990) Adhesion receptors of the immune system. Nature 346: 425–434

    Article  PubMed  CAS  Google Scholar 

  43. Lasky LA (1995) Selectin–carbohydrate interactions and the initiation of the inflammatory response. Annu Rev Biochem 64: 113–139

    Article  PubMed  CAS  Google Scholar 

  44. Martens CL, Cwirla SE, Lee RY, Whitehorn E, Chen EY, Bakker A, Martin EL, Wagstrom C, Gopalan P, Smith CW et al (1995) Peptides which bind to E-selectin and block neutrophil adhesion. J Biol Chem 270: 21129–21136

    Article  PubMed  CAS  Google Scholar 

  45. Ohyama C, Tsuboi S, Fukuda M (1999) Dual roles of sialyl Lewis X oligosaccharides in tumor metastasis and rejection by natural killer cells. Embo J 18: 1516–1525

    Article  PubMed  CAS  Google Scholar 

  46. Raghavendra Rao VL, Dhodda VK, Song G, Bowen KK, Dempsey RJ (2003) Traumatic brain injury-induced acute gene expression changes in rat cerebral cortex identified by GeneChip analysis. J Neurosci Res 71: 208–219

    Article  PubMed  CAS  Google Scholar 

  47. McAfee JG, Krauss DJ, Subramanian G, Thomas FD, Roskopf M, Ritter C, Lyons B, Schoonmaker JE, Finn RD (1983) Comparison of 99mTc phosphate and diphosphonate complexes in experimental renal infarcts. Invest Radiol 18: 479–484

    Article  PubMed  CAS  Google Scholar 

  48. Pasco A, Lemaire L, Franconi F, Lefur Y, Noury F, Saint-Andre JP, Benoit JP, Cozzone PJ, Le Jeune JJ (2007) Perfusional deficit and the dynamics of cerebral edemas in experimental traumatic brain injury using perfusion and diffusion-weighted magnetic resonance imaging. J Neurotrauma 24: 1321–1330

    Article  PubMed  Google Scholar 

  49. Beaumont A, Fatouros P, Gennarelli T, Corwin F, Marmarou A (2006) Bolus tracer delivery measured by MRI confirms edema without blood–brain barrier permeability in diffuse traumatic brain injury. Acta Neurochir Suppl 96: 171–174

    Article  PubMed  CAS  Google Scholar 

  50. Dardzinski BJ, Schmithorst VJ, Holland SK, Boivin GP, Imagawa T, Watanabe S, Lewis JM, Hirsch R (2001) MR imaging of murine arthritis using ultrasmall superparamagnetic iron oxide particles. Magn Reson Imaging 19: 1209–1216

    Article  PubMed  CAS  Google Scholar 

  51. Gellissen J, Axmann C, Prescher A, Bohndorf K, Lodemann KP (1999) Extra- and intracellular accumulation of ultrasmall superparamagnetic iron oxides (USPIO) in experimentally induced abscesses of the peripheral soft tissues and their effects on magnetic resonance imaging. Magn Reson Imaging 17: 557–567

    Article  PubMed  CAS  Google Scholar 

  52. Beduneau A, Hindre F, Clavreul A, Leroux JC, Saulnier P, Benoit JP (2008) Brain targeting using novel lipid nanovectors. J Control Release 126: 44–49

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Lemaire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chapon, C., Franconi, F., Lacoeuille, F. et al. Imaging E-selectin expression following traumatic brain injury in the rat using a targeted USPIO contrast agent. Magn Reson Mater Phy 22, 167–174 (2009). https://doi.org/10.1007/s10334-008-0161-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-008-0161-z

Keywords

Navigation