Skip to main content
Log in

Signal decay due to susceptibility-induced intravoxel dephasing on multiple air-filled cylinders: MRI simulations and experiments

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

Characterization of magnetic susceptibility artefacts with assessment of the gradient-echo signal decay function of echo time, pixel size, and object geometry in the case of air-filled cylinders embedded in water.

Materials and methods

Experiments were performed with a 0.2 T magnet on a network of small interacting air-filled cylinders along with Magnetic resonance imaging (MRI) simulations integrating intravoxel dephasing. Signal decay over echo time was assessed at different pixel sizes on real and simulated images. The effects of radius, distance between cylinders and main magnetic field were studied using simulation.

Results

Signal loss was greater as echo time or pixel size increased. Voxel signal decay was not exponential but was weighted by sinus cardinalis functions integrating echo time, pixel size and field inhomogeneities which depended on main magnetic field strength and geometric configuration of the object. Simulation was able to model signal decay, even for a complex object constituted of several cylinders. The specific experimental signal modulation we observed was thus reproduced and explained by simulation.

Conclusion

The quantitative signal decay approach at 0.2 T can be used in characterization studies in the case of locally regular air/water interfaces as the signal depends on object size relative to pixel size and is relevant to the geometric configuration. Moreover, the good concordance between simulation and experiments should lead to further studies of magnetic susceptibility effects with other objects such as networks of spheres. MRI simulation is thus a potential tool for molecular and porous media imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Song Y-Q (2003) Using internal magnetic fields to obtain pore size distributions of porous media. Concepts Magn Reson Part A Bridg Educ Res 18(2): 97–110

    Article  Google Scholar 

  2. Chen Q, Marble AE, Colpitts BG, Balcom BJ (2005) The internal magnetic field distribution and single exponential magnetic resonance free induction decay, in rocks. J Magn Reson 175(2): 300–308

    Article  PubMed  CAS  Google Scholar 

  3. Ludeke KM, Roschmann P, Tischler R (1985) Susceptibility artefacts in NMR imaging. Magn Reson Imaging 3(4): 329–343

    Article  PubMed  CAS  Google Scholar 

  4. Bos C, Viergever MA, Bakker CJG (2003) On the artifact of a subvoxel susceptibility deviation in spoiled gradient-echo imaging. Magn Reson Med 50(2): 400–404

    Article  PubMed  Google Scholar 

  5. Chen NK, Wyrwicz AM (1999) Removal of intravoxel dephasing artifact in gradient-echo images using a field-map based RF refocusing technique. Magn Reson Med 42(4): 807–812

    Article  PubMed  CAS  Google Scholar 

  6. Fernandez-Seara MA, Wehrli FW (2000) Postprocessing technique to correct for background gradients in image-based R2* measurements. Magn Reson Med 44(3): 358–366

    Article  PubMed  CAS  Google Scholar 

  7. Robson P, Hall L (2005) Identifying particles in industrial systems using MRI susceptibility artefacts. AIChE J 51(6): 1633–1640

    Article  CAS  Google Scholar 

  8. Peeters JM, van Faassen EEH, Bakker CJG (2006) Magnetic resonance imaging of microstructure transition in stainless steel. Magn Reson Imaging 24(5): 663–672

    Article  PubMed  Google Scholar 

  9. Wang Y, Yu Y, Li D, Bae KT, Brown JJ, Lin W, Haacke EM (2000) Artery and vein separation using susceptibility-dependent phase in contrast-enhanced MRA. J Magn Reson Imaging 12(5): 661–670

    Article  PubMed  CAS  Google Scholar 

  10. Seppenwoolde JH, Viergever MA, Bakker CJG (2003) Passive tracking exploiting local signal conservation: the white marker phenomenon. Magn Reson Med 50(4): 784–790

    Article  PubMed  Google Scholar 

  11. Ittrich H, Lange C, Togel F, Zander AR, Dahnke H, Westenfelder C, Adam G, Nolte-Ernsting C (2007) In vivo magnetic resonance imaging of iron oxide-labeled, arterially-injected mesenchymal stem cells in kidneys of rats with acute ischemic kidney injury: Detection and monitoring at 3T. J Magn Reson Imaging 25(6): 1179– 1191

    Article  PubMed  Google Scholar 

  12. Bos C, Delmas Y, Desmouliere A, Solanilla A, Hauger O, Grosset C, Dubus I, Ivanovic Z, Rosenbaum J, Charbord P, Combe C, Bulte JWM, Moonen CTW, Ripoche J, Grenier N (2004) In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology 233(3): 781–789

    Article  PubMed  Google Scholar 

  13. Seppenwoolde JH, Nijsen JFW, Bartels LW, Zielhuis SW, Schip ADV, Bakker CJG (2005) Internal radiation therapy of liver tumors: qualitative and quantitative magnetic resonance imaging of the biodistribution of holmium-loaded microspheres in animal models. Magn Reson Med 53(1): 76–84

    Article  PubMed  Google Scholar 

  14. Cunningham CH, Arai T, Yang PC, McConnell MV, Pauly JM, Conolly SM (2005) Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn Reson Med 53(5): 999–1005

    Article  PubMed  CAS  Google Scholar 

  15. Yoshikawa T, Mitchell DG, Hirota S, Ohno Y, Oda K, Maeda T, Fujii M, Sugimura K (2006) Gradient- and spin-echo T2-weighted imaging for SPIO-enhanced detection and characterization of focal liver lesions. J Magn Reson Imaging 23(5): 712–719

    Article  PubMed  Google Scholar 

  16. Dunning MD, Kettunen MI, Constant CF, Franklin RJM, Brindle KM (2006) Magnetic resonance imaging of functional Schwann cell transplants labelled with magnetic microspheres. Neuroimage 31(1): 172–180

    Article  PubMed  Google Scholar 

  17. Jensen JH, Chandra R (2002) Theory of nonexponential NMR signal decay in liver with iron overload or superparamagnetic iron oxide particles. Magn Reson Med 47(6): 1131–1138

    Article  PubMed  CAS  Google Scholar 

  18. Corot C, Robert P, Idee JM, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58(14): 1471–1504

    Article  PubMed  CAS  Google Scholar 

  19. Pintaske J, Muller-Bierl B, Schick F (2006) Effect of spatial distribution of magnetic dipoles on Lamor frequency distribution and MR signal decay—a numerical approach under static dephasing conditions. Magn Reson Mater Phys 19(1): 46–53

    Article  CAS  Google Scholar 

  20. Oweida AJ, Dunn EA, Karlik SJ, Dekaban GA, Foster PJ (2007) Iron-oxide labeling of hematogenous macrophages in a model of experimental autoimmune encephalomyelitis and the contribution to signal loss in fast imaging employing steady state acquisition (FIESTA) images. J Magn Reson Imaging 26(1): 144–151

    Article  PubMed  Google Scholar 

  21. Mowat P, Franconi F, Chapon C, Lemaire L, Dorat J, Hindre F, Benoit JP, Richomme P, Le Jeune JJ (2007) Evaluating SPIO-labelled cell MR efficiency by three-dimensional quantitative T-2* MRI. NMR Biomed 20(1): 21–27

    Article  PubMed  CAS  Google Scholar 

  22. Bonny J-M, Rouille J, Della Valle G, Devaux M-F, Douliez J-P, Renou J-P (2004) Dynamic magnetic resonance microscopy of flour dough fermentation. Magn Reson Imaging 22(3): 395–401

    Article  PubMed  Google Scholar 

  23. Wong KK, Huang I, Kim YR, Tang H, Yang ES, Kwong KK, Wu EX (2004) In vivo study of microbubbles as an MR susceptibility contrast agent. Magn Reson Med 52(3): 445–452

    Article  PubMed  CAS  Google Scholar 

  24. Bittoun J, Taquin J, Sauzade M (1984) A computer algorithm for the simulation of any nuclear magnetic resonance (NMR) imaging method. Magn Reson Imaging 2(2): 113–120

    Article  PubMed  CAS  Google Scholar 

  25. Benoit-Cattin H, Collewet G, Belaroussi B, Saint-Jalmes H, Odet C (2005) The SIMRI project: a versatile and interactive MRI simulator. J Magn Reson 173(1): 97–115

    Article  PubMed  CAS  Google Scholar 

  26. Yoder DA, Zhao Y, Paschal CB, Fitzpatrick JM (2004) MRI simulator with object-specific field map calculations. Magn Reson Imaging 22(3): 315–328

    Article  PubMed  Google Scholar 

  27. Jochimsen TH, Schafer A, Bammer R, Moseley ME (2006) Efficient simulation of magnetic resonance imaging with Bloch–Torrey equations using intra-voxel magnetization gradients. J Magn Reson 180(1): 29–38

    PubMed  CAS  Google Scholar 

  28. Muller-Bierl BM, Graf H, Pereira PL, Schick F (2006) Numerical simulations of intra-voxel dephasing effects and signal voids in gradient echo MR imaging using different sub-grid sizes. Magn Reson Mater Phys 19(2): 88–95

    Article  Google Scholar 

  29. Cheng YCN, Haacke EM, Yu YJ (2001) An exact form for the magnetic field density of states for a dipole. Magn Reson Imaging 19(7): 1017–1023

    Article  PubMed  CAS  Google Scholar 

  30. Sedlacik J, Rauscher A, Reichenbach JR (2007) Obtaining blood oxygenation levels from MR signal behavior in the presence of single venous vessels. Magn Reson Med 58(5): 1035–1044

    Article  PubMed  Google Scholar 

  31. Seppenwoolde JH, van Zijtveld M, Bakker CJG (2005) Spectral characterization of local magnetic field inhomogeneities. Phys Med Biol 50(2): 361–372

    Article  PubMed  Google Scholar 

  32. Guermazi A, Miaux Y, Zaim S, Peterfy CG, White D, Genant HK (2003) Metallic artefacts in MR imaging: effects of main field orientation and strength. Clin Radiol 58(4): 322–328

    Article  PubMed  CAS  Google Scholar 

  33. Balac S, Benoit-Cattin H, Lamotte T, Odet C (2004) Analytic solution to boundary integral computation of susceptibility induced magnetic field inhomogeneities. Math Comput Model 39(4–5): 437–455

    Article  Google Scholar 

  34. Grenier A, Lucas T, Collewet G, Le Bail A (2003) Assessment by MRI of local porosity in dough during proving. Theoretical considerations and experimental validation using a spin-echo sequence. Magn Reson Imaging 21(9): 1071–1086

    Article  PubMed  CAS  Google Scholar 

  35. Pintaske J, Muller-Bierl B, Schick F (2006) Geometry and extension of signal voids in MR images induced by aggregations of magnetically labelled cells. Phys Med Biol 51(18): 4707–4718

    Article  PubMed  CAS  Google Scholar 

  36. Tanimoto A, Oshio K, Suematsu M, Pouliquen D, Stark DD (2001) Relaxation effects of clustered particles. J Magn Reson Imaging 14(1): 72–77

    Article  PubMed  CAS  Google Scholar 

  37. Xu Y, Haacke EM (2006) The role of voxel aspect ratio in determining apparent vascular phase behavior in susceptibility weighted imaging. Magn Reson Imaging 24(2): 155–160

    Article  PubMed  CAS  Google Scholar 

  38. Chow LS, Cook GG, Whitby E, Paley MNJ (2006) Investigating direct detection of axon firing in the adult human optic nerve using MRI. Neuroimage 30(3): 835–846

    Article  PubMed  Google Scholar 

  39. Techawiboonwong A, Song HK, Magland JF, Saha PK, Wehrli FW (2005) Implications of pulse sequence in structural imaging of trabecular bone. J Magn Reson Imaging 22(5): 647–655

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François De Guio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Guio, F., Benoit-Cattin, H. & Davenel, A. Signal decay due to susceptibility-induced intravoxel dephasing on multiple air-filled cylinders: MRI simulations and experiments. Magn Reson Mater Phy 21, 261–271 (2008). https://doi.org/10.1007/s10334-008-0119-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-008-0119-1

Keywords

Navigation