Skip to main content

Advertisement

Log in

Ultra-fast three dimensional imaging of hyperpolarized 13C in vivo

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective: PASADENA, a chemical method of enhancing nuclear spin polarization has demonstrated 13C polarizations of order unity for the nascent products of molecular addition by parahydrogen. The extreme brevity of signal enhancement obtained by hyperpolarization requires improved 13C MR in vivo imaging techniques for their optimum utility.

Materials and Methods: 13C imaging sequences, including 13C 3D FIESTA, were compiled for a GE LX 1.5 T clinical MR scanner. Two water soluble 13C imaging agents were hyperpolarized utilizing parahydrogen and an automated polarizer. 13C polarization was quantified in flow phantoms and in rats with jugular vein catheters.

Results: Fast 3D FIESTA 13C MR imaging technique acquired sequential 3D images (3.66 s/acquisition) with superior SNR. Hyperpolarized 13C solutions and vascular phantoms achieved a maximum signal of 26,624±593. In vivo 13C MR images of the cardiopulmonary circulation showed maximum 13C signal of 2,402±158. 13C images acquired within 3.66 s showed signal enhancement over 10,000 compared to equilibrium polarization.

Conclusion: 3D-FIESTA was effective for sub-second in vivo imaging of hyperpolarized 13C reagents produced in a custom-built parahydrogen polarizer. Application to 13C hyperpolarized by parahydrogen is demonstrated in vitro and in vivo

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

13C:

Carbon 13

DNP:

Dynamic nuclear polarization

FIESTA:

Fast imaging employing steady-state acquisition

FOV:

Field of view

HEA:

2-hydroxyethylacrylate (1−13C,2,3,3D3)

HEP:

2-hydroxyethylpropionate (1−13C,2,3,3D3)

MIP:

Maximum intensity projection

MN:

multinuclear

MRI:

Magnetic resonance imaging

MRS:

Magnetic resonance spectroscopy

NMR:

Nuclear magnetic resonance

P:

Polarization

PASADENA:

Parahydrogen and synthesis allows dramatically enhanced nuclear alignment

PHIP:

Parahydrogen induced polarization

RF:

Radio frequency

SE:

Signal enhancement

SNR:

Signal-to-noise ratio

SSFP:

Steady-state free precession

TG:

Transmit gain

References

  1. Edelman R, Hesselink J, Zlatkin M (1996) Clinical magnetic resonance imaging. W. B. Saunders, Philadelphia

    Google Scholar 

  2. Ross BD, Lin A, Harris K, Bhattacharya P, B S (2003) Clinical experience with 13C MRS in vivo. NMR Biomed 16:358–369

    Article  PubMed  CAS  Google Scholar 

  3. Robitaille PM, Berliner LJ (2005) Ultra high field magnetic resonance imaging (UHFMRI). Kluwer, New York

    Google Scholar 

  4. Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603

    Article  PubMed  CAS  Google Scholar 

  5. Darrasse L, Ginefri JC (2003) Perspectives with cryogenic RF probes in biomedical MRI. Biochimie 85:915–937

    Article  PubMed  CAS  Google Scholar 

  6. Ruppert K, Brookeman JR, Hagspiel KD, Driehuys B, Mugler JP, 3rd (2000) NMR of hyperpolarized (129)Xe in the canine chest: spectral dynamics during a breath-hold. NMR Biomed 13:220–228

    Article  PubMed  CAS  Google Scholar 

  7. Moller HE, Chen XJ, Saam B, Hagspiel KD, Johnson GA, Altes TA, de Lange EE, Kauczor HU (2002) MRI of the lungs using hyperpolarized noble gases. Magn Reson Med 47:1029–1051

    Article  PubMed  Google Scholar 

  8. Ardenkjaer-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH, Servin R, Thaning M, Golman K (2003) Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc Natl Acad Sci USA 100:10158–10163

    Article  PubMed  CAS  Google Scholar 

  9. Farrar CT, Hall DA, Gerfen GJ, Rosay M, Ardenkjaer-Larsen JH, Griffin RG (2000) High-frequency dynamic nuclear polarization in the nuclear rotating frame. J Magn Reson 144:134–141

    Article  PubMed  CAS  Google Scholar 

  10. Golman K, Ardenkjaer-Larsen JH, Petersson JS, Mansson S, Leunbach I (2003) Molecular imaging with endogenous substances. Proc Natl Acad Sci USA 100:10435–10439

    Article  PubMed  CAS  Google Scholar 

  11. Bowers CR, Weitekamp DP (1986) Transformation of symmetrization order to nuclear spin magnetization by chemical reaction and nuclear magnetic resonance. Phys Rev Lett 57:2645–2648

    Article  PubMed  CAS  Google Scholar 

  12. Bowers CR, Weitekamp DP (1987) Para-hydrogen and synthesis allow dramatically enhanced nuclear alignment. J Am Chem Soc 109:5541–5542

    Article  CAS  Google Scholar 

  13. Golman K, Axelsson O, Johannesson H, Mansson S, Olofsson C, Petersson JS (2001) Parahydrogen-induced polarization in imaging: subsecond (13)C angiography. Magn Reson Med 46:1–5

    Article  PubMed  CAS  Google Scholar 

  14. Stephan M, Kohlmann O, Niessen HG, Eichhorn A, Bargon J (2002) C-13 PHIP NMR spectra and polarization transfer during the homogeneous hydrogenation of alkynes with parahydrogen. Magn Reson Chem 40:157–160

    Article  CAS  Google Scholar 

  15. Bhattacharya P, Weitekamp DP, Harris K, Lin AP, Ross BD (2004) Towards the development of smart contrast agents employing PASADENA. European Society of Magnetic Resonance in Medicine and Biology 236, p62

  16. Bhattacharya P, Weitekamp DP, Harris K, Mansson M, Lin AP, Norton VA, Perman WH, Ross BD (2005) Development of 13C and 15N contrast agents employing PASADENA. Proc Int Soc Magn Reson Med 13:171

    Google Scholar 

  17. Tran T, Bhattacharya P, Harris K, Lin AP, Weitekamp DP, Ross BD (2005) Coronary angiography in vivo employing PASADENA 13C and 1H magnetic resonance imaging. Annual SCMR Scientific Sessions, pp 62–63

  18. Bhattacharya P, Norton VA, Harris K, Mansson M, Lin AP, Ross BD, Weitekamp DP (2005) Ultra-fast real time imaging employing PASADENA. Gordon Research conference on magnetic resonance

  19. Harris K, Lin AP, Bhattacharya P, Weitekamp DP, Ross BD, Perman WH (2005) 3-D enhanced fast gradient echo 13C carbon imaging in a 1.5T clinical scanner. Proc Int Soc Magn Reson Med 13:76

    Google Scholar 

  20. Johannesson H, Axelsson O, Karlsson M (2004) Transfer of para-hydrogen spin order into polarization by diabatic field cycling. C. R. Physique 5:315–324

    Article  CAS  Google Scholar 

  21. Goldman M, Johannesson H, Axelsson O, Karlsson M (2005) Hyperpolarization of 13C through order transfer from parahydrogen: a new contrast agent for MRI. Magn Reson Imaging 23:153–157

    Article  PubMed  CAS  Google Scholar 

  22. Axelsson O, Olofsson C, Morgenstjerne A, Hansson G, Johannesson H, Ardenkjaer-Larsen J (2002) Process for preparation of MR contrast agents.Patent US 20020137965 A1.

  23. Cal/OSHA (2005) Subchapter 7. General Industry Safety Orders Group 20. Flammable Liquids, Gases and Vapors Article 138. Hydrogen. Available at: http://www.dir.ca.gov/title8/5465.html. Accessed July 22, 2005

  24. Johannesson H, Axelsson O, Karlsson M, Goldman M (2004) Methods to convert parahydrogen spin order into heteronuclei polarization for in vivo detection. In: Proceedings of 21st Annual Meeting ESMRMB, p 144

  25. Oppelt A GR, Barfuss H, Fisher H, Hartl W, Schajor W. (1986) FISP-a new fast MRI sequence. Electromedica 54:15–18

    Google Scholar 

  26. National Electrical Manufacturers Association (2001) Determination of signal-to-noise ratio (SNR) in diagnostic magnetic resonance imaging. NEMA Standards Publication MS 1–2001

  27. Svensson J, Mansson M, Johansson E, Petersson JS, LE O (2003) Hyperpolarized 13C angiography using TrueFISP. Magn Reson Med 50:256–262

    Article  PubMed  Google Scholar 

  28. Svensson J (2003) Contrast-enhanced magnetic resonance angiography. Acta Radiol Suppl 44:1–30

    Article  Google Scholar 

  29. Lin AP, Kohler SJ, Harris K, Mansson M, Bhattacharya P, Ross BD (2005) Metabolic imaging by hyperpolarized 13C substrates using echo-planar chemical shift imaging ESMRMB, p 63

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. D. Ross.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharya, P., Harris, K., Lin, A.P. et al. Ultra-fast three dimensional imaging of hyperpolarized 13C in vivo. MAGMA 18, 245–256 (2005). https://doi.org/10.1007/s10334-005-0007-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-005-0007-x

Keywords

Navigation