Skip to main content
Log in

High-resolution MR imaging of the rat spinal cord in vivo in a wide-bore magnet at 17.6 Tesla

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

The objective was to demonstrate the feasibility and to evaluate the performance of high-resolution in vivo magnetic resonance (MR) imaging of the rat spinal cord in a 17.6-T vertical wide-bore magnet. A probehead consisting of a surface coil that offers enlarged sample volume suitable for rats up to a weight of 220 g was designed. ECG triggered and respiratory-gated gradient echo experiments were performed on a Bruker Avance 750 wide-bore spectrometer for high-resolution imaging. With T*2 values between 5 and 20 ms, good image contrast could be obtained using short echo times, which also minimizes motion artifacts. Anatomy of healthy spinal cords and pathomorphological changes in traumatically injured rat spinal cord in vivo could be visualized with microscopic detail. It was demonstrated that imaging of the rat spinal cord in vivo using a vertical wide-bore high-magnetic-field system is feasible. The potential to obtain high-resolution images in short scan times renders high-field imaging a powerful diagnostic tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meyerand ME, Cremillieux Y, Wadghiri YZ et al. (1998) In vivo gradient echo microimaging of rodent spinal cord at 7 T. Magn Reson Med 40:789–791

    CAS  PubMed  Google Scholar 

  2. Fenyes DA, Narayana PA (1998) In vivo echo-planar imaging of rat spinal cord. Magn Reson Imaging 16:1249–1255

    Article  CAS  PubMed  Google Scholar 

  3. Narayana P, Fenyes D, Zacharopoulos N (1999) In vivo relaxation times of gray matter and white matter in spinal cord. Magn Reson Imaging 17:623–626

    Article  CAS  PubMed  Google Scholar 

  4. Franconi F, Lemaire L, Marescaux L et al. (2000) In vivo quantitative microimaging of rat spinal cord at 7 T. Magn Reson Med 44:893–898

    Article  CAS  PubMed  Google Scholar 

  5. Benveniste H, Qui H, Hedlund LW et al. (1998) Spinal cord neural anatomy in rats examined by in vivo magnetic resonance microscopy. Reg Anesth Pain Med 23:589–599

    Article  CAS  PubMed  Google Scholar 

  6. Fenyes DA, Narayana PA (1999) In vivo diffusion characteristics of rat spinal cord. Magn Reson Imaging 17:717–722

    Article  CAS  PubMed  Google Scholar 

  7. Fenyes DA, Narayana PA (1999) In vivo diffusion tensor imaging of rat spinal cord with echo planar imaging. Magn Reson Med 42:300–306

    Article  CAS  PubMed  Google Scholar 

  8. Elshafiey I, Bilgen M, He R, Narayana PA (2002) In vivo diffusion tensor imaging of rat spinal cord at 7 T. Magn Reson Imaging 20:243–247

    Article  PubMed  Google Scholar 

  9. Fraidakis M, Klason T, Cheng H et al. (1998) High-resolution MRI of intact and transected rat spinal cord. Exp Neurol 153:299–312

    Article  CAS  PubMed  Google Scholar 

  10. Benveniste H, Qui H, Hedlund LW et al. (1999) In vivo diffusion-weighted magnetic resonance microscopy of rat spinal cord: Effect of ischemia and intrathecal hyperbaric 5% lidocaine. Reg Anesth Pain Med 24:311–318

    Article  CAS  PubMed  Google Scholar 

  11. Bilgen M, Abbe R, Narayana PA (2001) Dynamic contrast-enhanced MRI of experimental spinal cord injury: In vivo serial studies. Magn Reson Med 45:614–622

    Article  CAS  PubMed  Google Scholar 

  12. Gareau PJ, Weaver LC, Dekaban GA (2001) In vivo magnetization transfer measurements of experimental spinal cord injury in the rat. Magn Reson Med 45:159–163

    Article  CAS  PubMed  Google Scholar 

  13. Bilgen M, Dogan B, Narayana PA (2002) In vivo assessment of blood-spinal cord barrier permeability: Serial dynamic contrast enhanced MRI of spinal cord injury.Magn Reson Imaging 20:337–341

    Article  PubMed  Google Scholar 

  14. Malisza KL, Stroman PW, Turner A et al. (2003) Functional MRI of the rat lumbar spinal cord involving painful stimulation and the effect of peripheral joint mobilization. J Magn Reson Imaging 18:152–159

    Article  PubMed  Google Scholar 

  15. Chen CN, Hoult DI (1989) Biomedical magnetic resonance technology. Adam Hilger, Bristol

  16. Scheff SW, Rabchevsky AG, Fugaccia I et al. (2003) Experimental modeling of spinal cord injury: Characterization of a force-defined injury device. J Neurotrauma 20:179–193

    Article  PubMed  Google Scholar 

  17. Silver X, Ni WX, Mercer EV et al. (2001) In vivo 1H magnetic resonance imaging and spectroscopy of the rat spinal cord using an inductively-coupled chronically implanted RF coil. Magn Reson Med 46:1216–1222

    Article  CAS  PubMed  Google Scholar 

  18. Bilgen M, Elshafiey I, Narayana PA (2001) In vivo magnetic resonance microscopy of the rat spinal cord at 7 T using implantable RF coils. Magn Reson Med 46:1250–1253

    Article  CAS  PubMed  Google Scholar 

  19. Anderson SA, Shukaliak-Quandt J, Jordan EK et al. (2003) Cellular MR imaging of magnetically labeled encephalitogenic T-cells in the mouse spinal cord. Proc Int Soc Magn Reson Med 11:763

    Google Scholar 

  20. Bonny JM, Gaviria M, Donnat JP (2004) Nuclear magnetic resonance microimaging of mouse spinal cord in vivo. Neurobiol Dis 15:474–482

    Article  PubMed  Google Scholar 

  21. Gibbs RA, Weinstock GM, Metzker ML et al. (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428:493–521

    Article  CAS  PubMed  Google Scholar 

  22. Hayes CE, Edelstein WA, Schenck JF et al. (1985) An efficient, highly homogeneous radiofrequency coil for whole-body NMR imaging at 1.5 T. J Magn Reson 63:622–628

    CAS  Google Scholar 

Download references

Acknowledgments.

We would like to acknowledge Sebastian Aussenhofer for his expert technical assistance, Ines Wieland for help with building the resonator, and Vikas Gulani for comments on the manuscript. This work was funded by the “Deutsche Forschungsgemeinschaft (DFG)” under project number “HA 1232/13”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. C. Behr.

Additional information

Volker C. Behr and Thomas Weber contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behr, V., Weber, T., Neuberger, T. et al. High-resolution MR imaging of the rat spinal cord in vivo in a wide-bore magnet at 17.6 Tesla. MAGMA 17, 353–358 (2004). https://doi.org/10.1007/s10334-004-0057-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-004-0057-5

Keywords

Navigation