Skip to main content

Advertisement

Log in

Sex differences in habitat use, positional behavior, and gaits of Golden Snub-Nosed Monkeys (Rhinopithecus roxellana) in the Qinling Mountains, Shaanxi, China

  • Original Article
  • Published:
Primates Aims and scope Submit manuscript

Abstract

Studies of positional behavior, gait, and habitat use are important for understanding how animals adapt to the challenges of their environment. In turn, this information is useful for advancing research on primate morphology, life history, and ecology. Data on eco-mechanical variables can be used to develop concrete conservation and management plans for understudied and threatened primate groups. The present study explores the positional behavior, gaits, and habitat use of male and female adult golden snub-nosed monkeys (Rhinopithecus roxellana), an endemic, endangered, and highly dimorphic species of central China. Using focal animal sampling and opportunistic videorecording in the Guanyinshan National Nature Reserve on the southern slopes of the Qinling Mountains, it was determined that gait parameters were largely the same between sexes. By contrast, habitat use and, to a lesser extent, positional behavior varied significantly between males and females. In general, males were more terrestrial than females. When they moved arboreally, males also used a greater proportion of horizontal and large substrates compared to females. Furthermore, males used more standing postures, forelimb suspensory positional behaviors, and quadrupedal walking. These data suggest that, when faced with the mechanical challenges of large body size, primates such as R. roxellana are more likely to respond by altering habitat use rather than positional behaviors or intrinsic kinematics and timing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aronsen GP (2005) Conservation applications of positional behavior, support use, and forest structure data. Am J Phys Anthropol 126(S40):66

    Google Scholar 

  • Cant JGH (1987) Effects of sexual dimorphism in body size on feeding postural behavior of Sumatran orangutans (Pongo pygmaeus). Am J Phys Anthropol 74:143–148

    Google Scholar 

  • Cant JGH (1992) Positional behavior and body size of arboreal primates: a theoretical framework for field studies and an illustration of its application. Am J Phys Anthropol 88:273–283

    CAS  PubMed  Google Scholar 

  • Cartmill M (1985) Climbing. In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds) Functional vertebrate morphology. Belknap Press, Cambridge, pp 73–88

    Google Scholar 

  • Cartmill M, Lemelin P, Schmitt D (2002) Support polygons and symmetrical gaits in mammals. Zool J Lin Soc 136:401–420

    Google Scholar 

  • Clemente CJ, Dick TJM, Wheatley R, Gaschk J, Nasir AFAA, Cameron SF, Wilson RS (2019) Moving in complex environments: a biomechanical analysis of locomotion on inclined and narrow substrates. J Exp Biol 222:jeb189654

    PubMed  Google Scholar 

  • Dagosto M (1994) Testing positional behavior of Malagasy lemurs: a randomization approach. Am J Phys Anthropol 94:189–202

    CAS  PubMed  Google Scholar 

  • Dagosto M, Gebo DL (1998) Methodological issues in studying positional behavior. In: Strasser E, Fleagle JG, Rosenberger AL, McHenry H (eds) Primate locomotion: recent advances. Springer, New York, pp 5–29

    Google Scholar 

  • Dawkins MS (2007) Observing animal behaviour. Oxford University Press, Oxford

    Google Scholar 

  • Doran DM (1993) Sex differences in adult chimpanzee positional behavior: the influence of body size on locomotion and posture. Am J Phys Anthropol 91:99–115

    CAS  PubMed  Google Scholar 

  • Fan P, Scott MB, Fei H, Ma C (2013) Locomotion behavior of cao vit gibbon (Nomascus nasutus) living in karst forest in Bangliang Nature Reserve, Guangxi. China Int Zool 8(4):356–364. https://doi.org/10.1111/j.1749-4877.2012.00300.x

    Article  Google Scholar 

  • Fleagle JG, Mittermeier R (1980) Locomotor behavior, body size, and comparative ecology of seven Surinam monkeys. Am J Phys Anthropol 52:301–314

    Google Scholar 

  • Gebo DL (1992) Locomotor and postural behavior in Alouatta palliata and Cebus capucinus. Am J Phys Anthropol 26:277–290

    Google Scholar 

  • Granatosky MC (2018) A review of locomotor diversity in mammals with analyses exploring the influence of substrate-use, body mass, and intermembral index in primates. J Zool Lond 306:207–216

    Google Scholar 

  • Granatosky MC, Fitzsimons A (2017) Is all quadrupedalism the same? Form-function relationships in behaviorally distinct Asian colobines. J Viet Primatol 2:59–72

    Google Scholar 

  • Granatosky MC, Schmitt D (2019) The mechanical origins of arm-swinging. J Hum Evol 130:61–71

    PubMed  Google Scholar 

  • Granatosky MC, Schmitt D, Hanna J (2019) Comparison of spatiotemporal gait characteristics between vertical climbing and horizontal walking in primates. J Exp Zool. https://doi.org/10.1242/jeb.185702

    Article  Google Scholar 

  • Grand TI (1972) A mechanical interpretation of terminal branch feeding. J Mammal 53:198–201

    Google Scholar 

  • Grand TI (1984) Motion economy within the canopy: four strategies for mobility. In: Rodman PS, Cant JGH (eds) Adaptations for foraging in non-human primates. Columbia University Press, New York, pp 54–72

    Google Scholar 

  • Greuter CC, van Schaik CP (2009) Sexual dimorphism in Asian colobines revisited. Am J Primatol 7:609–616

    Google Scholar 

  • Greuter CC, Li D, Ren B, Li M (2013) Substrate use and postural behavior in free-ranging snub-nosed monkeys (Rhinopithecus bieti) in Yunnan. Int Zool 8:335–345

    Google Scholar 

  • Guo S, Li B, Watanabe K (2007) Diet and activity budget of Rhinopithecus roxellana in the Qinling Mountains, China. Primates 48:268–276. https://doi.org/10.1007/s10329-007-0048-z

    Article  PubMed  Google Scholar 

  • Hunt KD, Cant JGH, Gebo DL, Rose MD, Walker SE, Youlatos D (1996) Standardized descriptions of primate locomotor and postural modes. Primates 37:363–387. https://doi.org/10.1007/BF02381373

    Article  Google Scholar 

  • Iriarte-Díaz J, Reed DA, Ross CF (2011) Sources of variance in temporal and spatial aspects of jaw kinematics in two species of primates feeding on foods of different properties. Integ Comp Biol 51(2):307–319

    Google Scholar 

  • Isler K, Greuter CC (2006) Arboreal locomotion in wild black-and-white snub-nosed monkeys (Rhinopithecus bieti). Folia Primatol 77:195–211

    Google Scholar 

  • Isler K, Thorpe SKS (2003) Gait parameters in vertical climbing of captive, rehabilitant and wild Sumatran orangutans (Pongo pygmaeus abelii). J Exp Biol 206:4081–4096

    PubMed  Google Scholar 

  • Jablonski NG (2002) Fossil Old World monkeys: the late Neogene radiation. In: Hartwig WC (ed) The primate fossil record. Cambridge University Press, Cambridge, pp 255–299

    Google Scholar 

  • Jablonski NG, Pan R (1995) Sexual dimorphism in the snub-nosed langurs (Colobinae: Rhinopithecus). Am J Phys Anthropol 96:251–272

    CAS  PubMed  Google Scholar 

  • Jablonski NG, Ji X, Kelley J, Flynn LJ, Deng C, Su DF (2020) Mesopithecus pentelicus from Zhaotong, China, the easternmost representative of a widespread Miocene cercopithecoid species. J Hum Evol 146:102851

    PubMed  Google Scholar 

  • Kamilar JM, Pokempner AA (2008) Does body mass dimorphism increase male-female dietary niche separation? A comparative study of primates. Behaviour 145:1211–1234

    Google Scholar 

  • Kirkpatrick RC, Greuter CC (2010) Snub-nosed monkeys: multilevel societies across varied environments. Evol Anthropol 19:98–113

    Google Scholar 

  • Kirkpatrick RC, Long YC (1994) Altitudinal ranging and terrestriality in the Yunnan snub-nosed monkey (Rhinopithecus bieti). Folia Primatol 63:102–106

    Google Scholar 

  • Le KQ (2014) Positional behavior and support use of the tonkin snub-nosed monkeys (Rhinopithecus avunculus) in Khau Ca forest, Ha Giang Province, Vietnam. Dissertation, University of Colorado

  • Li YM (2007) Terrestriality and tree stratum use in a group of Sichuan snub-nosed monkeys. Primates 48:197–207

    PubMed  Google Scholar 

  • Li B, Li M, Li J, Fan P, Ni Q, Lu J, Garber PA et al (2018) The primate extinction crisis in China: immediate challenges and a way forward. Biodivers Conserv 27(13):3301–3327

    Google Scholar 

  • Liedigk R, Yang M, Jablonski NG, Momberg F, Geissmann T, Lwin N, Hla TH, Liu Z, Wong B, Ming L, Yongcheng L, Zhang YP, Nadler T, Zinner D, Roos C (2012) Evolutionary history of the odd-nosed monkeys and the phylogenetic position of the newly described Myanmar snub-nosed monkey Rhinopithecus strykeri. PLoS ONE 7(5):e37418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma C, Fan P (2020) Effect of substrate type on langur positional repertoire. Glob Ecol Conserv 22:e00956

    Google Scholar 

  • Martin P, Bateson P (1993) Measuring behaviour. Cambridge University Press, Cambridge

    Google Scholar 

  • McGraw WS (1998) Posture and support use of Old World monkeys (Cercopithecidae): the influence of foraging strategies, activity patterns, and the spatial distribution of preferred food items. Am J Primatol 46:229–250

    CAS  PubMed  Google Scholar 

  • McGraw WS, Sciulli PW (2011) Posture, ischial tuberosities, and tree zone use in West African cercopithecids. In: D’Août K, Vereecke EE (eds) Primate locomotion. Springer, New York, pp 215–224

    Google Scholar 

  • Mekonnen A, Fashing PJ, Sargis EJ, Venkataraman VV, Bekele A, Hernandez-Aguilar RA, Rueness EK, Stenseth NC (2018) Flexibility in positional behavior, strata use, and substrate utilization among Bale monkeys (Chlorocebus djamdjamensis) in response to habitat fragmentation and degradation. Am J Primatol 80:e22760

    PubMed  Google Scholar 

  • Niklas KJ (1992) Plant biomechanics: an engineering approach to plant form and function. University of Chicago Press, Chicago

    Google Scholar 

  • Pan R, Groves C, Oxnard C (2004) Relationships between the fossil colobine Mesopithecus pentelicus and extant cercopithecoids, based on dental metrics. Am J Primatol 62:287–299

    PubMed  Google Scholar 

  • Pan R, Oxnard C, Greuter CC, Li B, Qi X, He G, Guo S, Garber PA (2016) A new conservation strategy for China—a model starting with primates. Am J Primatol 78:1137–1148

    PubMed  Google Scholar 

  • Pontzer H, Wrangham RW (2004) Climbing and the daily energy cost of locomotion in wild chimpanzees: implications for hominoid locomotor evolution. J Hum Evol 46:317–335

    PubMed  Google Scholar 

  • Prost JH (1965) A definitional system for the classification of primate locomotion. Am Anthropol 67(5):1198–1214

    Google Scholar 

  • Remis M (1999) Tree structure and sex differences in arboreality among western lowland gorillas (Gorilla gorilla gorilla) at Bai Hokou, Central African Republic. Primates 40:383–396

    Google Scholar 

  • Ren BP, Zhang SY, Wang LX, Liang B, Li B (2001) Vertical distribution of different age–sex classes in a foraging group of Sichuan golden monkeys (Rhinopithecus roxellana). Folia Primatol 72:96–99

    CAS  Google Scholar 

  • Roos C, Zinner D, Kubatko LS, Schwarz C, Yang M, Meyer D, Nash SD, Xing J, Batzer MA, Brameier M, Leendertz FH, Ziegler T, Perwitasari-Farajallah D, Nadler T, Walter L, Osterholz M (2011) Nuclear versus mitochondrial DNA: evidence for hybridization in colobine monkeys. BMC Evol Biol 11:77

    PubMed  PubMed Central  Google Scholar 

  • Rose MD (1974) Postural adaptations in New and Old World monkeys. In: Jenkins Jr FA (ed) Primate locomotion. Academic Press, New York, pp 201–222

    Google Scholar 

  • Saunders ELR, Roberts AM, Thorpe SKS (2017) Positional behaviour. In: Fuentes A (ed) The international encyclopedia of primatology. Wiley, New York. https://doi.org/10.1002/9781119179313.wbprim0074

  • Schmitt D (1999) Compliant walking in primates. J Zool Lond 248:149–160

    Google Scholar 

  • Schmitt D (2003) Substrate size and primate forelimb mechanics: implications for understanding the evolution of primate locomotion. Int J Primatol 24:1023–1036

    Google Scholar 

  • Stevens NJ (2008) The effect of branch diameter on primate gait sequence pattern. Am J Primatol 70:356–362

    PubMed  Google Scholar 

  • Su DF, Jablonksi NG (2009) Locomotor behavior and skeletal morphology of the odd-nosed monkeys. Folia Primatol 80:189–219

    Google Scholar 

  • Wang CL, Wang XW, Zhao HT, Ren Y, Li BG (2016) Population viability analysis of Sichuan snub-nosed monkeys (Rhinopithecus roxellana) in the Dapingyu region of the Qinling Mountains, China. Acta Ecol Sin 36:7724–7731

    Google Scholar 

  • Youlatos D (1998) Seasonal variation in the positional behavior of red howling monkeys (Alouatta seniculus). Primates 39(4):449–457

    Google Scholar 

  • Youlatos D (1999) Comparative locomotion of six sympatric primates in Ecuador. Ann Sci Nat Zool Biol 20(4):161–168

    Google Scholar 

  • Youlatos D (2008) Locomotion and positional behavior of Ateles. In: Campbell CJ (ed) Spider monkeys: behavior, ecology and evolution of the Genus Ateles. Cambridge University Press, Cambridge, pp 185–219

    Google Scholar 

  • Youlatos D, Guillot D (2015) Positional behavior of howler monkeys. In: Kowalewski M, Garber PA, Cortés Ortiz L, Urbani B, Youlatos D (eds) Howler monkeys: behavior, ecology and conservation. Springer, New York, pp 191–218

    Google Scholar 

  • Youlatos D, Couette S, Koufos GD (2012) A functional multivariate analysis of Mesopithecus (Primates: Colobinae) humeri from the Turolian of Greece. J Hum Evol 63:219–230

    PubMed  Google Scholar 

  • Yu L, Wang GD, Ruan J, Chen YB, Yang CP, Cao X, Wu H, Liu YH et al (2016) Genomic analysis of snub-nosed monkeys (Rhinopithecus) identifies genes and processes related to high altitude adaptation. Nat Genet 48(8):947–952

    CAS  PubMed  Google Scholar 

  • Zhou X, Meng X, Liu Z, Chang J, Wang B, Li M, Wengel PO, Tian S et al (2016) Population genomics reveal low genetic diversity and adaptation to hypoxia in snub-nosed monkeys. Mol Biol Evol 33(10):2670–2681

    CAS  PubMed  Google Scholar 

  • Zhu WW, Garber PA, Bezanson M, Qi XG, Li B (2015) Age- and sex-based patterns of positional behavior and substrate utilization in the golden snub-nosed monkey (Rhinopithecus roxellana). Am J Primatol 77(1):98–108

    PubMed  Google Scholar 

Download references

Acknowledgements

Field study was made possible through a China-EU Window fellowship (CSC No. 2017CEU011799) to DY. Great thanks are owed to all those people from different institutions that directly and indirectly helped in the realization of this research.

Author information

Authors and Affiliations

Authors

Contributions

DY conducted field work. GH, SG, and BL assisted during fieldwork. DY, RAB, and MCG analyzed the data. DY and MCG wrote the manuscript. All other authors provided critical editorial advice.

Corresponding authors

Correspondence to Dionisios Youlatos or Baoguo Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youlatos, D., Granatosky, M.C., Al Belbeisi, R. et al. Sex differences in habitat use, positional behavior, and gaits of Golden Snub-Nosed Monkeys (Rhinopithecus roxellana) in the Qinling Mountains, Shaanxi, China. Primates 62, 507–519 (2021). https://doi.org/10.1007/s10329-021-00900-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10329-021-00900-2

Keywords

Navigation