Skip to main content

Advertisement

Log in

Effect of habitat quality on the ecological behaviour of a temperate-living primate: time-budget adjustments

  • Original Article
  • Special contributions 'Out of the tropics: Ecology of temperate primates'
  • Published:
Primates Aims and scope Submit manuscript

Abstract

Barbary macaques, like other non-human primates living in highly seasonal temperate environments, display high monthly variations in their diet. In addition, their diet changes according to the habitat type they colonize and to the degree of habitat degradation due to resource exploitation by local people, in particular through pastoralism. We studied the time-budget adjustments of wild Barbary macaques in three cedar–oak forests impacted by different intensities of grazing pressure from goats and sheep. We examined how diet variations influenced the time monkeys spent in their activities and their day range lengths (i.e. their energy costs). At three studied sites, diet composition and time budgets showed marked seasonal variations. Diet composition had a strong influence on monkeys’ time budget. In the forest where pastoralism was the highest, diet included a greater proportion of underground resources, shrub fruit and acorns, which led to an increase in the time spent foraging and moving, as well as an important increase in day range lengths. Energy costs were therefore higher in a degraded environment than in a suitable habitat. The monkeys living in forests subjected to pastoralism took advantage of increased day lengths to spend more time searching for food. However, in the forest with the highest pastoralism pressure, although monkeys spent more time foraging, they spent less time feeding than monkeys at the other sites. In addition, they appeared to have reached the limits of the available time they could devote to these activities, as their diurnal resting time was at its lowest level over several months. Temperature variations did not appear to modify monkeys’ time budgets. In the least favourable habitat, saving time from resting activity allowed monkeys to maintain a relatively high level of social activity, partly linked to rearing constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbas F, Morellet N, Hewison AJM, Merlet J, Cargnelutti B, Lourtet B, Angibault JM, Daufresne T, Aulagnier S, Verheyden H (2011) Landscape fragmentation generates spatial variation of diet composition and quality in a generalist herbivore. Oecologia 167:401–411

    Article  PubMed  Google Scholar 

  • Agetsuma N (1995) Foraging strategies of Yakushima macaques (Macaca fuscata yakui). Int J Primatol 16:595–609

    Article  Google Scholar 

  • Agetsuma N, Nakagawa N (1998) Effects of habitat differences on feeding behaviors of Japanese monkeys: comparison between Yakushima and Kinkazan. Primates 39:275–289

    Article  Google Scholar 

  • Altmann J (1974) Observational study of behavior: sampling methods. Behaviour 49:227–266

    Article  PubMed  CAS  Google Scholar 

  • Altmann J, Muruthi P (1988) Differences in daily life between semiprovisioned and wild-feeding baboons. Am J Primatol 15:213–221

    Article  Google Scholar 

  • Aublet JF, Festa-Bianchet M, Bergero D, Bassano B (2009) Temperature constraints on foraging behaviour of male Alpine ibex (Capra ibex) in summer. Oecologia 159:237–247

    Article  PubMed  Google Scholar 

  • Barros L, Carvalho AM, Ferreira I (2011) Comparing the composition and bioactivity of Crataegus monogyna flowers and fruits used in folk medicine. Phytochem Anal 22:181–188

    Article  PubMed  CAS  Google Scholar 

  • Bourgoin G, Garel M, Van Moorter B, Dubray D, Maillard D, Marty E, Gaillard JM (2008) Determinants of seasonal variation in activity patterns of mouflon. Can J Zool 86:1410–1418

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information—theoretical approach. Springer, New York

    Google Scholar 

  • Caselli CB, Setz EZF (2011) Feeding ecology and activity pattern of black-fronted titi monkeys (Callicebus nigrifrons) in a semideciduous tropical forest of southern Brazil. Primates 52:351–359

    Article  PubMed  Google Scholar 

  • Chaves OM, Stoner KE, Arroyo-Rodriguez V (2011) Seasonal differences in activity patterns of Geoffroyi’s Spider Monkeys (Ateles geoffroyi) living in continuous and fragmented forests in Southern Mexico. Int J Primatol 32:960–973

    Article  Google Scholar 

  • Di Fiore A, Rodman PS (2001) Time allocation patterns of lowland woolly monkeys (Lagothrix lagotricha poeppigii) in a neotropical terra firma forest. Int J Primatol 22:449–480

    Article  Google Scholar 

  • Djordjevic B, Savikin K, Zdunic G, Jankovic T, Vulic T, Oparnica C, Radivojevic D (2010) Biochemical properties of red currant varieties in relation to storage. Plant Foods Hum Nutr 65:326–332

    Article  PubMed  CAS  Google Scholar 

  • Dolédec S, Chessel D (1994) Co-inertia analysis—an alternative method for studying species environment relationships. Freshw Biol 31:277–294

    Article  Google Scholar 

  • Dolédec S, Chessel D, Mercier P (1997) ADE4 on the web. Ecological data analysis: exploratory and Euclidean methods in environmental sciences. Topics documentation, vol 4: coupling and constraints. Ecological profiles and co-inertia analysis

  • Dray S, Chessel D, Thioulouse J (2003) Co-inertia analysis and the linking of ecological data tables. Ecology 84:3078–3089

    Article  Google Scholar 

  • Dray S, Dufour AB, Chessel D (2007) The ade4 package: II: two-table and K-table methods. R News 7:47–52. doi:http://pbil.univ-lyon1.fr/ade4/article_rnews2007.php

  • Dunbar RIM (1992) Time—a hidden constraint on the behavioral ecology of baboons. Behav Ecol Sociobiol 31:35–49

    Article  Google Scholar 

  • Dunbar RIM, Korstjens AH, Lehmann J (2009) Time as an ecological constraint. Biol Rev 84:413–429

    Article  PubMed  CAS  Google Scholar 

  • Egea I, Sanchez-Bel P, Romojaro F, Pretel MT (2010) Six edible wild fruits as potential antioxidant additives or nutritional supplements. Plant Food Hum Nutr 65:121–129

    Article  CAS  Google Scholar 

  • Fa JE, Taub DM, Ménard N, Stewart PJ (1984) The distribution and current status of the Barbary macaque in North Africa. In: Fa JE (ed) The Barbary macaque: a case study in conservation. Plenum, New York, pp 79–111

    Chapter  Google Scholar 

  • Famiani F, Baldicchi A, Battistelli A, Moscatello S, Walker RP (2009) Soluble sugar and organic acid contents and the occurrence and potential role of phosphoenolpyruvate carboxykinase (PEPCK) in gooseberry (Ribes grossularia L.). J Hortic Sci Biotech 84:249–254

    CAS  Google Scholar 

  • Fan PF, Ni QY, Sun GZ, Huang B, Jiang XL (2008) Seasonal variations in the activity budget of Nomascus concolor jingdongensis at Mt. Wuliang, Central Yunnan, China: effects of diet and temperature. Int J Primatol 29:1047–1057

    Article  Google Scholar 

  • Grueter CC, Li D, Ren B, Li M (2013) Overwintering strategy of Yunnan snub-nosed monkeys: adjustments in activity scheduling and foraging patterns. Primates (this special issue)

  • Grueter CC, Li DY, Ren BP, Wei FW, Xiang ZF, van Schaik CP (2009) Fallback foods of temperate-living primates: a case study on snub-nosed monkeys. Am J Phys Anthropol 140:700–715

    Article  PubMed  Google Scholar 

  • Gulcin I, Topal F, Cakmakci R, Bilsel M, Goren AC, Erdogan U (2011) Pomological features, nutritional quality, polyphenol content analysis, and antioxidant properties of domesticated and 3 wild ecotype forms of raspberries (Rubus idaeus L.). J Food Sci 76:C585–C593

    Article  PubMed  CAS  Google Scholar 

  • Guo SG, Li BG, Watanabe K (2007) Diet and activity budget of Rhinopithecus roxellana in the Qinling Mountains, China. Primates 48:268–276

    Article  PubMed  Google Scholar 

  • Hanya G (2004) Seasonal variations in the activity budget of Japanese macaques in the coniferous forest of Yakushima: effects of food and temperature. Am J Primatol 63:165–177

    Article  PubMed  Google Scholar 

  • Hanya G, Noma N, Agetsuma N (2003) Altitudinal and seasonal variations in the diet of Japanese macaques in Yakushima. Primates 44:51–59

    Article  PubMed  Google Scholar 

  • Hill DA (1997) Seasonal variation in the feeding behavior and diet of Japanese macaques (Macaca fuscata yakui) in lowland forest of Yakushima. Am J Primatol 43:305–322

    Article  PubMed  CAS  Google Scholar 

  • Hill RA (2006) Thermal constraints on activity scheduling and habitat choice in baboons. Am J Phys Anthropol 129:242–249

    Article  PubMed  Google Scholar 

  • Hill RA, Dunbar RIM (2002) Climatic determinants of diet and foraging behaviour in baboons. Evol Ecol 16:579–593

    Article  Google Scholar 

  • Hotelling H (1936) Relations between two sets of variates. Biometrika 28:321–377

    Google Scholar 

  • IUCN (2008) IUCN red list of threatened species. IUCN, Gland, Switzerland. http://www.iucnredlist.org

  • Kalac P (2009) Chemical composition and nutritional value of European species of wild growing mushrooms: a review. Food Chem 113:9–16

    Article  CAS  Google Scholar 

  • Kazaz S, Baydar H, Erbas S (2009) Variations in chemical compositions of Rosa damascena Mill. and Rosa canina L. fruits. Czech J Food Sci 27:178–184

    CAS  Google Scholar 

  • Korstjens AH, Lehmann J, Dunbar RIM (2010) Resting time as an ecological constraint on primate biogeography. Anim Behav 79:361–374

    Article  Google Scholar 

  • Li ZY, Rogers E (2004) Habitat quality and activity budgets of white-headed langurs in Fusui, China. Int J Primatol 25:41–54

    Article  Google Scholar 

  • Marsh CW (1981) Ranging behaviour and its relation to diet selection in Tana River Red colobus (Colobus badius rufomitratus). J Zool Lond 195:473–492

    Article  Google Scholar 

  • Mehlman PT (1988) Food resources of the wild Barbary macaque (Macaca sylvanus) in high altitude fir forest, Ghomaran Rif, Morocco. J Zool Lond 214:469–490

    Article  Google Scholar 

  • Mekonnen A, Bekele A, Fashing PJ, Hemson G, Atickem A (2010) Diet, activity patterns, and ranging ecology of the Bale monkey (Chlorocebus djamdjamensis) in Odobullu forest, Ethiopia. Int J Primatol 31:339–362

    Article  Google Scholar 

  • Ménard N (1985) Le régime alimentaire de Macaca sylvanus dans différents habitats d’Algérie: I-régime en chênaie décidue (in French with English summary). Rev Ecol Terre Vie 40:351–466

    Google Scholar 

  • Ménard N, Qarro M (1999) Bark stripping and water availability: a comparative study between Moroccan and Algerian Barbary macaques (Macaca sylvanus). Rev Ecol Terre Vie 54:123–132

    Google Scholar 

  • Ménard N, Rantier Y, Foulquier A, Qarro M, Chillasse L, Vallet D, Pierre J-S, Butet A (2013) Impact of human pressure and forest fragmentation on Moroccan Barbary Macaque (Macaca sylvanus) populations. Oryx (in press)

  • Ménard N, Vallet D (1986) Le régime alimentaire de Macaca sylvanus dans différents habitats d’Algérie: II-régime en forêt sempervirente et sur les sommets rocheux (in French with English summary). Rev Ecol Terre Vie 41:173–192

    Google Scholar 

  • Ménard N, Vallet D (1988) Disponibilités et utilisation des ressources par le magot (Macaca sylvanus) dans différents milieux en Algérie (in French with English summary). Rev Ecol Terre Vie 43:201–250

    Google Scholar 

  • Ménard N, Vallet D (1993) Population dynamics of Macaca sylvanus in Algeria: an 8-year study. Am J Primatol 30:101–118

    Article  Google Scholar 

  • Ménard N, Vallet D (1997) Behavioral responses of Barbary macaques (Macaca sylvanus) to variations in environmental conditions in Algeria. Am J Primatol 43:285–304

    Article  PubMed  Google Scholar 

  • Menon S, Poirier FE (1996) Lion-tailed macaques (Macaca silenus) in a disturbed forest fragment: activity patterns and time budget. Int J Primatol 17:969–985

    Article  Google Scholar 

  • Mortelliti A, Amori G, Boitani L (2010) The role of habitat quality in fragmented landscapes: a conceptual overview and prospectus for future research. Oecologia 163:535–547

    Article  PubMed  Google Scholar 

  • O’Brien TG, Kinnaird MF (1997) Behavior, diet, and movements of the Sulawesi crested black macaque (Macaca nigra). Int J Primatol 18:321–351

    Article  Google Scholar 

  • Palma AC, Velez A, Gomez-Posada C, Lopez H, Zarate DA, Stevenson PR (2011) Use of space, activity patterns, and foraging behavior of Red howler monkeys (Alouatta seniculus) in an Andean forest fragment in Colombia. Am J Primatol 73:1062–1071

    PubMed  Google Scholar 

  • Pavelka MSM, Knopff KH (2004) Diet and activity in black howler monkeys (Allouatta pigra) in southern Belize: does degree of frugivory influence activity level? Primates 45:105–111

    Article  PubMed  Google Scholar 

  • Pereira E, Barros L, Martins A, Ferreira I (2012) Towards chemical and nutritional inventory of Portuguese wild edible mushrooms in different habitats. Food Chem 130:394–403

    Article  CAS  Google Scholar 

  • R Development Core Team (2010) A language and environment for statistical computing. R Foundation for statistical computing. Vienna, Austria

  • Riley EP (2007) Flexibility in diet and activity patterns of Macaca tonkeana in response to anthropogenic habitat alteration. Int J Primatol 28:107–133

    Article  Google Scholar 

  • Sayers K, Norconk MA (2008) Himalayan Semnopithecus entellus at Langtang National Park, Nepal: diet, activity patterns, and resources. Int J Primatol 29:509–530

    Article  Google Scholar 

  • Small MF (1990) Alloparental behaviour in Barbary macaques (Macaca sylvanus). Anim Behav 39:297–306

    Article  Google Scholar 

  • Taub DM (1977) Geographic distribution and habitat diversity of the Barbary macaque M. sylvanus L. Folia Primatol 27:108–133

    Article  PubMed  CAS  Google Scholar 

  • Taub DM (1984) Male caretaking behavior among wild Barbary macaques (Macaca sylvanus). In: Taub DM (ed) Primate paternalism. Van Nostrand Reinhold, New York, pp 20–55

    Google Scholar 

  • Thioulouse J, Chessel D, Dolédec S, Olivier JM (1997) ADE-4: a multivariate analysis and graphical display software. Stat Comput 7:75–83

    Article  Google Scholar 

  • Tosun I, Ustun NS, Tekguler B (2008) Physical and chemical changes during ripening of blackberry fruits. Sci Agric 65:87–90

    Article  CAS  Google Scholar 

  • Tsuji Y, Fujita S, Sugiura H, Saito C, Takatsuki S (2006) Long-term variation in fruiting and the food habits of wild Japanese macaques on Kinkazan Island, northern Japan. Am J Primatol 68:1068–1080

    Article  PubMed  Google Scholar 

  • van Doorn AC, O’Riain MJ, Swedell L (2010) The effects of extreme seasonality of climate and day length on the activity budget and diet of semi-commensal chacma baboons (Papio ursinus) in the Cape Peninsula of South Africa. Am J Primatol 72:104–112

    PubMed  Google Scholar 

  • Vasey N (2005) Activity budgets and activity rhythms in red ruffed lemurs (Varecia rubra) on the Masoala Peninsula, Madagascar: seasonality and reproductive energetics. Am J Primatol 66:23–44

    Article  PubMed  Google Scholar 

  • Warton DI, Hui FKC (2011) The arcsine is asinine: the analysis of proportions in ecology. Ecology 92:3–10

    Article  PubMed  Google Scholar 

  • Zhao QK (1999) Responses to seasonal changes in nutrient quality and patchiness of food in a multigroup community of Tibetan macaques at Mt. Emei. Int J Primatol 20:511–524

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this study came from the contract “Service Provincial des Eaux et Forêts d’Ifrane/University of Rennes 1”, with N. Ménard and M. Qarro as French and Moroccan scientific leaders, respectively. We thank the whole team of the Ifrane National Park project, Z. Amhaouch, I. Bouziane, B. Elasri, N. Elrouat and L. Oukannou, who provided logistical help and encouragement when necessary. Our study was conducted in close partnership with the “Haut Commissariat aux Eaux et Forêts et à la Lutte contre la Désertification” and the Regional Director of “Eaux et Forêts du Moyen Atlas” at Meknes. Special thanks go to Y. Delettre for helpful comments on the analyses. We are greatly indebted to G. Hanya, C. Grueter and Y. Tsuji for inviting N.M. to the symposium on temperate primates of the IPS2010 congress in Japan and for truly helpful comments on the manuscript. We are grateful to A. Korstjens and one anonymous reviewer for providing helpful comments that improved the manuscript. This is a scientific production of UMR CNRS 6553, Caren-OSUR, University of Rennes 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelly Ménard.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Appendix S1 (DOC 43 kb)

Appendix S2 (DOC 52 kb)

About this article

Cite this article

Ménard, N., Motsch, P., Delahaye, A. et al. Effect of habitat quality on the ecological behaviour of a temperate-living primate: time-budget adjustments. Primates 54, 217–228 (2013). https://doi.org/10.1007/s10329-013-0350-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10329-013-0350-x

Keywords

Navigation