Skip to main content
Log in

Acibenzolar-S-methyl activates stomatal-based defense against Pseudomonas cannabina pv. alisalensis in cabbage

  • Disease Control
  • Published:
Journal of General Plant Pathology Aims and scope Submit manuscript

Abstract

Pseudomonas cannabina pv. alisalensis (Pcal), which causes bacterial blight of brassicaceous plants, is an economically important pathogen worldwide. Copper fungicide and antibiotics are major strategies to manage the disease caused by Pcal; however, a Pcal strain resistant to these chemicals has already been found, and severe outbreaks of bacterial blight have been reported on cabbage in Japan. Therefore, there is an urgent need to develop new Pcal management strategies. Plant defense activators could be useful not only to protect plants against invading pathogens, but also to reduce the amount of copper fungicides and antibiotics applied. However, the mechanisms by which plant defense activators contribute to controlling diseases remains unclear. In this work, we focused on cabbage and acibenzolar-S-methyl (ASM), a well-known plant defense activator. Expression profiles revealed that ASM induced expression of systemic acquired resistance (SAR) marker genes including PR1, PR2, and PR5 in cabbage plants. We also demonstrated that a soil drench with ASM 2 h before transplanting clearly reduced bacterial blight symptoms and reduced Pcal bacterial populations in cabbage. ASM application was also able to prime cabbage for Pcal resistance by activating stomatal-based defense. Our findings highlight that ASM protects plants from bacterial pathogens by activating stomatal-based defense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bektas Y, Eulgem T (2015) Synthetic plant defense elicitors. Front Plant Sci 5:804

    Article  Google Scholar 

  • Chanda B, Xia Y, Mandal MK, Yu K, Sekine KT, Gao QM, Selote D, Hu Y, Stromberg A, Navarre D, Kachroo A, Kachroo P (2011) Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants. Nat Genet 43:421–427

    Article  CAS  Google Scholar 

  • Chaturvedi R, Venables B, Petros RA, Nalam V, Li M, Wang X, Takemoto LJ, Shah J (2012) An abietane diterpenoid is a potent activator of systemic acquired resistance. Plant J 71:161–172

    Article  CAS  Google Scholar 

  • Chitrakar R, Melotto M (2010) Assessing stomatal response to live bacterial cells using whole leaf imaging. J Vis Exp 44:e2185

    Google Scholar 

  • Friedrich L, Lawton K, Ruess W, Masner P, Specker N, Rella MG, Meier B, Dincher S, Staub T, Uknes S, Métraux JP, Kessmann H, Ryals J (1996) A benzothiadiazole derivative induces systemic acquired resistance in tobacco. Plant J 10:61–70

    Article  CAS  Google Scholar 

  • Görlach J, Volrath S, Knauf-Beiter G, Hengy G, Beckhove U, Kogel KH, Oostendorp M, Staub T, Ward E, Kessmann H, Ryals J (1996) Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell 8l:629–643.

    Google Scholar 

  • Hacquard S, Spaepen S, Garrido-Oter R, Schulze-Lefert P (2017) Interplay between innate immunity and the plant microbiota. Annu Rev Phytopathol 55:565–589

    Article  CAS  Google Scholar 

  • Horinouchi H (2010) Occurrence and control of root browning symptom of Japanese radish caused by Pseudomonas syringae pv. maculicola (in Japanese). Plant Prot (Shokubutsu Boueki) 64:220–223

    Google Scholar 

  • Ishiga Y, Ichinose Y (2016) Pseudomonas syringae pv. tomato OxyR is required for virulence in tomato and Arabidopsis. Mol Plant Microbe Interact 29:119–131

    Article  CAS  Google Scholar 

  • Ishiga T, Ishiga Y, Betsuyaku S, Nomura N (2018) AlgU contributes to the virulence of Pseudomonas syringae pv. tomato DC3000 by regulating production of the phytotoxin coronatine. J Gen Plant Pathol 84:189–201

    Article  CAS  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  Google Scholar 

  • Jung HW, Tschaplinski TJ, Wang L, Glazebrook J, Greenberg JT (2009) Priming in systemic plant immunity. Science 324:89–91

    Article  Google Scholar 

  • Keane PJ, Kerr A, New PB (1970) Crown gall of stone fruit II. Identification and nomenclature of Agrobacterium isolates. Aust J Biol Sci 23:585–595

    Article  Google Scholar 

  • Kunz W, Schurter R, Maetzke T (1997) The chemistry of benzothiadiazole plant activators. Pestic Sci 50:275–282

    Article  CAS  Google Scholar 

  • Lawton KA, Hunt Friedrich L, M, Weymann K, Delaney T, Kessmann H, Staub T, Ryals J, (1996) Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J 10:71–82

    Article  CAS  Google Scholar 

  • Lozano-Durán R, Bourdais G, He SY, Robatzek S (2014) The bacterial effector HopM1 suppresses PAMP-triggered oxidative burst and stomatal immunity. New Phytol 202:259–269

    Article  Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980

    Article  CAS  Google Scholar 

  • Melotto M, Underwood W, He SY (2008) Role of stomata in plant innate immunity and foliar bacterial diseases. Annu Rev Phytopathol 46:101–122

    Article  CAS  Google Scholar 

  • Melotto M, Zhang L, Oblessuc PR, He SY (2017) Stomatal defense a decade later. Plant Physiol 174:561–571

    Article  CAS  Google Scholar 

  • Morris SW, Vernooij B, Titatarn S, Starrett M, Thomas S, Wiltse CC, Frederiksen RA, Bhandhufalck A, Hulbert S, Uknes S, (1998) Induced resistance responses in maize. Mol Plant Microbe Interact 11:643–658

    Article  CAS  Google Scholar 

  • Oostendorp M, Kunz W, Dietrich B, Staub T (2001) Induced disease resistance in plants by chemicals. Eur J Plant Pathol 107:19–28

    Article  CAS  Google Scholar 

  • Prodhan MY, Issak M, Nakamura T, Munemasa S, Nakamura Y, Murata Y (2017) Chitosan signaling in guard cells requires endogenous salicylic acid. Biosci Biotechnol Biochem 81:1536–1541

    Article  CAS  Google Scholar 

  • Prodhan MY, Munemasa S, Nahar MN, Nakamura Y, Murata Y (2018) Guard cell salicylic acid signaling is integrated into abscisic acid signaling via the Ca2+/CPK-dependent pathway. Plant Physiol 178:441–450

    Article  CAS  Google Scholar 

  • Sarris PF, Trantas EA, Baltrus DA, Bull CT, Wechter WP, Yan S, Ververidis F, Almeida NF, Jones CD, Dangl JL, Panopoulos NJ, Vinatzer BA, Goumas DE (2013) Comparative genomics of multiple strains of Pseudomonas cannabina pv. alisalensis, a potential model pathogen of both monocots and dicots. PLoS ONE 8:59366

    Article  Google Scholar 

  • Takahashi F, Ochiai M, Ikeda K, Takikawa Y (2013a) Streptomycin and copper resistance in Pseudomonas cannabina pv. alisalensis (abstract in Japanese). Jpn J Phytopathol 79:35

    Google Scholar 

  • Takahashi F, Ogiso H, Fujinaga M, Ishiyama Y, Inoue Y, Shirakawa T, Takikawa Y (2013b) First report of bacterial blight of crucifers caused by Pseudomonas cannabina pv. alisalensis in Japan. J Gen Plant Pathol 79:260–269

    Article  CAS  Google Scholar 

  • Takikawa Y, Takahashi F (2014) Bacterial leaf spot and blight of crucifer plants (Brassicaceae) caused by Pseudomonas syringae pv. maculicola and P. cannabina pv. alisalensis. J Gen Plant Pathol 80:466–474

    Article  Google Scholar 

  • Toum L, Torres PS, Gallego SM, Benavídes MP, Vojnov AA, Gudesblat GE (2016) Coronatine inhibits stomatal closure through guard cell-specific inhibition of NADPH oxidase-dependent ROS production. Front Plant Sci 7:1851

    Article  Google Scholar 

  • Tripathi D, Jiang YL, Kumar D (2010) SABP2, a methyl salicylate esterase is required for the systemic acquired resistance induced by acibenzolar-S-methyl in plants. FEBS Lett 584:3458–3463

    Article  CAS  Google Scholar 

  • Uknes S, Mauch-Mani B, Moyer M, Potter S, Williams S, Dincher S, Chandler D, Slusarenko A, Ward E, Ryals J (1992) Acquired resistance in Arabidopsis. Plant Cell 4:645–656

    CAS  PubMed  PubMed Central  Google Scholar 

  • Underwood W, Melotto M, He SY (2007) Role of plant stomata in bacterial invasion. Cell Microbiol 9:1621–1629

    Article  CAS  Google Scholar 

  • Vlot AC, Liu PP, Cameron RK, Park SW, Yang Y, Kumar D, Zhou F, Padukkavidana T, Gustafsson C, Pichersky E, Klessig DF (2008) Identification of likely orthologs of tobacco salicylic acid-binding protein 2 and their role in systemic acquired resistance in Arabidopsis thaliana. Plant J 56:445–456

    Article  CAS  Google Scholar 

  • Yu K, Soares J, Mandal MK, Wang C, Chanda B, Gifford AN, Fowler JS, Navarre D, Kachroo A, Kachroo P (2013) A feedback regulatory loop between G3P and lipid transfer proteins DIR1 and AZI1 mediates azelaic-acid-induced systemic immunity. Cell Reports 3:1266–1278

    Article  CAS  Google Scholar 

  • Zhou M, Wang W (2018) Recent advances in synthetic chemical inducers of plant immunity. Front Plant Sci 9:1613

    Article  Google Scholar 

  • Zipfel C (2008) Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol 20:10–16

    Article  CAS  Google Scholar 

  • Zipfel C, Felix G (2005) Plants and animals: a different taste for microbes? Curr Opin Plant Biol 8:353–360

    Article  CAS  Google Scholar 

  • Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–767

    Article  CAS  Google Scholar 

  • Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–760

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Christina Baker for editing the manuscript. Pcal was kindly provided by the Nagano Vegetable and Ornamental Crops Experiment Station, Nagano, Japan. This work was supported in part by the JST ERATO NOMURA Microbial Community Control Project, JST, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Ishiga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human participants or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishiga, T., Iida, Y., Sakata, N. et al. Acibenzolar-S-methyl activates stomatal-based defense against Pseudomonas cannabina pv. alisalensis in cabbage. J Gen Plant Pathol 86, 48–54 (2020). https://doi.org/10.1007/s10327-019-00883-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10327-019-00883-5

Keywords

Navigation