Skip to main content
Log in

Investigations on the role of cuticular wax in resistance to powdery mildew in grapevine

  • Disease Control
  • Published:
Journal of General Plant Pathology Aims and scope Submit manuscript

Abstract

Cuticular wax on the plant epidermis inhibits or enhances prepenetration events of powdery mildew (Erysiphe necator Schwein). We examined the role of cuticular leaf and berry waxes as a resistance mechanism in four grapevine genotypes (Italia × Mercan-174, Gürcü, Isabella, Özer Karası) resistant to powdery mildew after natural infection and inoculation. To understand cuticular wax properties, we determined the amount of wax and antifungal effects of thin layer chromatography (TLC) fractions from cuticular leaf and berry waxes, then assessed the chemical composition of fractions with different antifungal activities using gas chromatography/mass spectrometry (GC/MS). Susceptible genotypes Cabernet Sauvignon and Italia were used for comparison. Resistant and sensitive genotypes did not differ significantly in the total amount of wax on leaves and berries; however, 27 fatty acids, 26 alkanes, 6 terpenes, 4 indole derivatives and 4 ketones, and 3 amides, 3 phenols and 3 steroids were detected in fractions with high antifungal activity (≥75% inhibition of germination) in leaf and/or berry cuticular waxes of resistant genotypes only. These compounds may be evaluated as markers for powdery mildew resistance during genotype selection in a grapevine breeding program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alves RF, Nascimento AMD, Nogueira JMF (2005) Characterization of the aroma profile of Madeira wine by sorptive extraction techniques. Anal Chim Acta 546:11–21

    Article  CAS  Google Scholar 

  • Bargel H, Koch K, Cerman Z, Neinhuis C (2006) Structure–function relationships of the plant cuticle and cuticular waxes—a smart material? Funct Plant Biol 33:893–910

    Article  CAS  Google Scholar 

  • Batovska DI, Todorova IT, Nedelcheva DV, Parushev SP, Atanassov AI, Hvarleva TD, Djakova GJ, Bankova VS, Popov SS (2008) Preliminary study on biomarkers for the fungal resistance in Vitis vinifera leaves. J Plant Physiol 165:791–795

    Article  CAS  PubMed  Google Scholar 

  • Carver TLW, Thomas BJ, Ingerson-Morris SM, Roderick HW (1990) The role of the abaxial leaf surface waxes of Lolium spp. in resistance to Erysiphe graminis. Plant Pathol 39:573–583

    Article  Google Scholar 

  • Choi GJ, Jang KS, Choi YH, Yu JH, Kim JC (2010) Antifungal activity of lower alkyl fatty acid esters against powdery mildews. Plant Pathol J 26:360–366

    Article  CAS  Google Scholar 

  • Hansjakob A, Bischof S, Bringmann G, Riederer M, Hildebrandt U (2010) Very-long-chain aldehydes promote in vitro prepenetration processes of Blumeria graminis in a dose- and chain length-dependent manner. New Phytol 188:1039–1054

    Article  CAS  PubMed  Google Scholar 

  • Hansjakob A, Riederer M, Hildebrandt U (2011) Wax matters: absence of very-long-chain aldehydes from the leaf cuticular wax of the glossy11 mutant of maize compromises the prepenetration processes of Blumeria graminis. Plant Pathol 60:1151–1161

    Article  CAS  Google Scholar 

  • Hunt MD, Delaney TP, Dietrich RA, Weymann KB, Dangl JL, Ryals JA (1997) Salicylate-independent lesion formation in Arabidopsis lsd mutants. Mol Plant Microbe Interact 10:531–536

    Article  CAS  PubMed  Google Scholar 

  • Kristensen BK, Burhenne K, Rasmussen SK (2004) Peroxidases and the metabolism of hydroxycinnamic acid amides in Poaceae. Phytochem Rev 3:127–140

    Article  CAS  Google Scholar 

  • May B, Lange BM, Wüst M (2013) Biosynthesis of sesquiterpenes in grape berry exocarp of Vitis vinifera L.: evidence for a transport of farnesyl diphosphate precursors from plastids to the cytosol. Phytochemistry 95:135–144

    Article  CAS  PubMed  Google Scholar 

  • Miyagawa H, Toda H, Tsurushima T, Ueno T, Shishiyama J (1994) Accumulation of tryptamine in barley leaves irradiated with UV light. Biosci Biotechnol Biochem 58:1723–1724

    Article  CAS  Google Scholar 

  • Özer C, Solak E, Öztürk L, Özer N (2012) The development of powdery mildew-tolerant grape cultivars with standard quality characteristics by cross-breeding. Afr J Agric Res 7:1374–1380

    Article  Google Scholar 

  • Özer N, Özer C, Solak E, Gindro K, Schnee S (2015) Leaf resistance to Erysiphe necator in some Turkish grapevine genotypes: preliminary studies on the role of leaf wax layer. Phytopathol Mediterr 54:170 (Abstract)

    Google Scholar 

  • Piermattei B, Piva A, Castellari M, Arfelli G, Amati A (1999) The phenolic composition of red grapes and wines as infected by Oidium tuckeri development. Research note. Vitis 38:85–86

    Google Scholar 

  • Post-Beittenmiller D (1996) Biochemistry and molecular biology of wax production in plants. Annu Rev Plant Physiol Plant Mol Biol 47:405–430

    Article  CAS  PubMed  Google Scholar 

  • Pradeep T, Jambhale ND (2001) Possible role of waxes in powdery mildew resistance in Zizhyphus. Indian Phytopathol 54:29–31

    Google Scholar 

  • Ringelmann A, Riedel M, Riederer M, Hildebrandt U (2009) Two sides of a leaf blade: Blumeria graminis needs chemical cues in cuticular waxes of Lolium perenne for germination and differentiation. Planta 230:95–105

    Article  CAS  PubMed  Google Scholar 

  • Satisha J, Doshi P, Adsule PG (2008) Influence of rootstocks on changing the pattern of phenolic compounds in Thompson seedless grapes and its relationship to the incidence of powdery mildew. Turk J Agric For 32:1–9

    CAS  Google Scholar 

  • Schnee S (2008) Facteurs de résistance à l’oïdium (Erysiphe necator Schwein.) chez la vigne (Vitis vinifera L.). PhD dissertation. Neuchâtel University, Neuchâtel

    Google Scholar 

  • Schnee S, Viret O, Gindro K (2008) Role of stilbenes in the resistance of grapevine to powdery mildew. Physiol Mol Plant Pathol 72:128–133

    Article  CAS  Google Scholar 

  • Shah J (2005) Lipids, lipases, and lipid-modifying enzymes in plant disease resistance. Annu Rev Phytopathol 43:229–260

    Article  CAS  PubMed  Google Scholar 

  • Sticher L, Mauch-Mani B, Métraux JP (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:235–270

    Article  CAS  PubMed  Google Scholar 

  • Tsuba M, Katagiri C, Takeuchi Y, Takada Y, Yamaoka N (2002) Chemical factors of the leaf surface involved in the morphogenesis of Blumeria graminis. Physiol Mol Plant Pathol 60:51–57

    Article  CAS  Google Scholar 

  • von Röpenack E, Parr A, Schulze-Lefert P (1998) Structural analyses and dynamics of soluble and cell wall-bound phenolics in a broad spectrum resistance to the powdery mildew fungus in barley. J Biol Chem 273:9013–9022

    Article  Google Scholar 

  • Weidenbach D, Jansen M, Franke RB, Hensel G, Weissgerber W, Ulferts S, Jansen I, Schreiber L, Korzun V, Pontzen R, Kumlehn J, Pillen K, Schaffrath U (2014) Evolutionary conserved function of barley and Arabidopsis 3-ketoacyl-CoA synthases in providing wax signals for germination of powdery mildew fungi. Plant Physiol 166:1621–1633

    Article  PubMed  PubMed Central  Google Scholar 

  • Weis C, Hildebrandt U, Hoffmann T, Hemetsberger C, Pfilmeier S, König C, Schwab W, Eichmann R, Hückelhoven R (2014) CYP83A1 is required for metabolic compatibility of Arabidopsis with the adapted powdery mildew fungus Erysiphe cruciferarum. New Phytol 202:1310–1319

    Article  CAS  PubMed  Google Scholar 

  • Wilson K (2000) Chromatographic techniques. In: Williams B, Wilson K (eds) Principles and techniques of practical biochemistry. Cambridge University Press, New York, pp 619–686

    Google Scholar 

  • Zabka V, Stangl M, Bringmann G, Vogg G, Riederer M, Hildebrandt U (2008) Host surface properties affect prepenetration processes in the barley powdery mildew fungus. New Phytol 177:251–263

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Research Fund of Namık Kemal University (Project Number NKUBAP.00.24.AR.14.26) for their support, Central Research Laboratory (NABILTEM-NKU) for using GC/MS. The authors are also grateful to Martha Rowe (University of Nebraska-Lincoln) for improving the language and for useful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuray Özer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özer, N., Şabudak, T., Özer, C. et al. Investigations on the role of cuticular wax in resistance to powdery mildew in grapevine. J Gen Plant Pathol 83, 316–328 (2017). https://doi.org/10.1007/s10327-017-0728-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10327-017-0728-5

Keywords

Navigation