Skip to main content

Advertisement

Log in

Rating the risks of anticoagulant rodenticides in the aquatic environment: a review

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Anticoagulant rodenticides are used worldwide to control commensal rodents for hygienic and public health reasons. As anticoagulants act on all vertebrates, risk is high for unintentional poisoning of terrestrial and aquatic wildlife. Causative associations have been demonstrated for the unintended poisoning of terrestrial nontarget organisms. However, behavior and fate of anticoagulant rodenticides in the aquatic environment have received minimal attention in the past despite considerable acute toxicity of several anticoagulants to aquatic species such as fish. In light of recent regulatory developments in the European Union concerning rodenticides, we critically review available information on the environmental occurrence, fate, and impact of anticoagulant rodenticides in the aquatic environment and identify potential risks and routes of exposure as well as further research needs. Recent findings of anticoagulant rodenticides in raw and treated wastewater, sewage sludge, estuarine sediments, suspended particulate matter, and liver tissue of freshwater fish in the low ng/L and µg/kg range, respectively, demonstrate that the aquatic environment experiences a greater risk of anticoagulant rodenticide exposure than previously thought. While the anticoagulant’s mechanism of action from the molecular through cellular levels is well understood, substantial data gaps exist regarding the understanding of exposure pathways and potential adverse effects of chronic exposure with multiple active ingredients. Anticoagulants accumulating in aquatic wildlife are likely to be transferred in the food chain, causing potentially serious consequences for the health of wildlife and humans alike.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ajo P, Preis S, Vornamo T, Mänttäri M, Kallioinen M, Louhi-Kultanen M (2018) Hospital wastewater treatment with pilot-scale pulsed corona discharge for removal of pharmaceutical residues. J Environ Chem Eng 6:1569–1577. https://doi.org/10.1016/j.jece.2018.02.007

    Article  CAS  Google Scholar 

  • Alomar H, Chabert A, Coeurdassier M, Vey D, Berny P (2018) Accumulation of anticoagulant rodenticides (chlorophacinone, bromadiolone and brodifacoum) in a non-target invertebrate, the slug, Deroceras reticulatum. Sci Total Environ 610–611:576–582. https://doi.org/10.1016/j.scitotenv.2017.08.117

    Article  CAS  Google Scholar 

  • Andre C, Guyon C, Guillaume YC (2004) Rodenticide-humic acid adsorption mechanisms and role of humic acid on their toxicity on human keratinocytes: chromatographic approach to support the biological data. J Chromatogr, B: Anal Technol Biomed Life Sci 813:295–302. https://doi.org/10.1016/j.jchromb.2004.10.028

    Article  CAS  Google Scholar 

  • Andre C, Guyon C, Thomassin M, Barbier A, Richert L, Guillaume YC (2005) Association mechanism between a series of rodenticide and humic acid: a frontal analysis to support the biological data. J Chromatogr, B: Anal Technol Biomed Life Sci 820:9–14. https://doi.org/10.1016/j.jchromb.2005.02.020

    Article  CAS  Google Scholar 

  • Barnes KK, Kolpin DW, Furlong ET, Zaugg SD, Meyer MT, Barber LB (2008) A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States - I) groundwater. Sci Total Environ 402:192–200. https://doi.org/10.1016/j.scitotenv.2008.04.028

    Article  CAS  Google Scholar 

  • Barten R (2014) New approaches from the view of industry. In: Esther A et al (eds) Rodenticide resistance. Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Braunschweig, pp 50–54

    Google Scholar 

  • Battersby SA (2015) Rodents as carriers of disease. In: Buckle AP, Smith RH (eds) Rodent pests and their control. CABI, Oxfordshire, pp 81–100

    Google Scholar 

  • Bayen S, Estrada ES, Juhel G, Kelly BC (2015) Direct injection of tissue extracts in liquid chromatography/tandem mass spectrometry for the determination of pharmaceuticals and other contaminants of emerging concern in mollusks. Anal Bioanal Chem 407:5553–5558. https://doi.org/10.1007/s00216-015-8760-9)

    Article  CAS  Google Scholar 

  • Beklova M, Krizkova S, Supalkova V et al (2007) Determination of bromadiolone in pheasants and foxes by differential pulse voltammetry. Int J Environ Anal Chem 87:459–469. https://doi.org/10.1080/03067310601170472

    Article  CAS  Google Scholar 

  • Berny PJ, Buronfosse T, Buronfosse F, Lamarque F, Lorgue G (1997) Field evidence of secondary poisoning of foxes (Vulpes vulpes) and buzzards (Buteo buteo) by bromadiolone, a 4-year survey. Chemosphere 35:1817–1829. https://doi.org/10.1016/S0045-6535(97)00242-7

    Article  CAS  Google Scholar 

  • Berny P, Velardo J, Pulce C, D’Amico A, Kammerer M, Lasseur R (2010) Prevalence of anticoagulant rodenticide poisoning in humans and animals in France and substances involved. Clin Toxicol (Phila) 48:935–941. https://doi.org/10.3109/15563650.2010.533678

    Article  Google Scholar 

  • Bidny S, Gago K, David M, Duong T, Albertyn D, Gunja N (2015) A validated LC-MS-MS method for simultaneous identification and quantitation of rodenticides in blood. J Anal Toxicol 39:219–224. https://doi.org/10.1093/jat/bku175

    Article  CAS  Google Scholar 

  • Booth LH, Ogilvie SC, Eason CT (2010) Persistence of sodium monofluoroacetate (1080), pindone, cholecalciferol, and brodifacoum in possum baits under simulated rainfall. N Z J Agric Res 42:107–112. https://doi.org/10.1080/00288233.1999.9513359

    Article  Google Scholar 

  • Brakes CR, Smith RH (2005) Exposure of non-target small mammals to rodenticides: short-term effects, recovery and implications for secondary poisoning. J Appl Ecol 42:118–128. https://doi.org/10.1111/j.1365-2664.2005.00997.x

    Article  CAS  Google Scholar 

  • Buckle AP, Eason CT (2015) Control methods: chemical. In: Buckle AP, Smith RH (eds) Rodent pests and their control. CAB International, Wallingford, pp 123–154

    Google Scholar 

  • Buckle AP, Smith RH (eds) (2015) rodent pests and their control. CAB International, Wallingford

    Google Scholar 

  • BVL (2012) Absatz an Pflanzenschutzmitteln in der Bundesrepublik Deutschland. Bundesamt für Verbraucherschutz und Lebensmittelsicherheit, Braunschweig

    Google Scholar 

  • BVL (2015) Absatz an Pflanzenschutzmitteln in der Bundesrepublik Deutschland. Bundesamt für Verbraucherschutz und Lebensmittelsicherheit, Braunschweig

    Google Scholar 

  • Cavanagh J-AE, Ward N (2014) Contaminants in estuarine and riverine sediments and biota in Southland. Environment Southland, Invercargill

    Google Scholar 

  • Chen XH, Cai MQ, Ouyang XK, Jin MC (2009) Ion chromatography tandem mass spectrometry for simultaneous confirmation and determination of indandione rodenticides in serum. Biomed Chromatogr 23:1217–1226. https://doi.org/10.1002/bmc.1246

    Article  CAS  Google Scholar 

  • Chen M, Zhu G, Zhou L, Min J, Chen X, Jin M (2014) Analysis of trace bromadiolone and brodifacoum in environmental water samples by ionic liquid ultrasound-assisted dispersive liquid–liquid microextraction and LC-MS/MS. Anal Methods 6:5879–5885. https://doi.org/10.1039/c3ay42317d

    Article  CAS  Google Scholar 

  • Christensen TK, Lassen P, Elmeros M (2012) High exposure rates of anticoagulant rodenticides in predatory bird species in intensively managed landscapes in Denmark. Arch Environ Contam Toxicol 63:437–444. https://doi.org/10.1007/s00244-012-9771-6

    Article  CAS  Google Scholar 

  • Coeurdassier M, Riols R, Decors A et al (2014) Unintentional wildlife poisoning and proposals for sustainable management of rodents. Conserv Biol 28:315–321. https://doi.org/10.1111/cobi.12230

    Article  Google Scholar 

  • Colvin BA, Swift TB, Fothergill FE (1998) Control of Norway rats in sewer and utility systems using pulsed baiting methods. In: Proceedings of the 18th vertebrate pest conference, vol 36, pp 247–253

  • Connors KA, Du B, Fitzsimmons PN et al (2013) Comparative pharmaceutical metabolism by rainbow trout (Oncorhynchus mykiss) liver S9 fractions. Environ Toxicol Chem 32:1810–1818. https://doi.org/10.1002/etc.2240

    Article  CAS  Google Scholar 

  • Crouse BA, Ghoshdastidar AJ, Tong AZ (2012) The presence of acidic and neutral drugs in treated sewage effluents and receiving waters in the Cornwallis and Annapolis River watersheds and the Mill CoveSewage Treatment Plant in Nova Scotia, Canada. Environ Res 112:92–99. https://doi.org/10.1016/j.envres.2011.11.011

    Article  CAS  Google Scholar 

  • CRRU UK (2015) Campaign for responsible rodenticide Use UK code of best practice. Campaign for Responsible Rodenticide Use UK, Leeds

    Google Scholar 

  • Damin-Pernik M, Espana B, Besse S et al (2016) Development of an ecofriendly anticoagulant rodenticide based on the stereochemistry of difenacoum. Drug Metab Dispos 44:1872–1880. https://doi.org/10.1124/dmd.116.071688

    Article  CAS  Google Scholar 

  • Damin-Pernik M, Espana B, Lefebvre S et al (2017) Management of rodent populations by anticoagulant rodenticides: toward third-generation anticoagulant rodenticides. Drug Metab Dispos 45:160–165. https://doi.org/10.1124/dmd.116.073791

    Article  CAS  Google Scholar 

  • Dawson A, Garthwaite D (2004) Rodenticide usage by local authorities in Great Britain 2001. Pesticide usage survey report 185. Department for Environment, Food and Rural Affairs, New York

    Google Scholar 

  • de Solla SR, Gilroy EA, Klinck JS et al (2016) Bioaccumulation of pharmaceuticals and personal care products in the unionid mussel Lasmigona costata in a river receiving wastewater effluent. Chemosphere 146:486–496. https://doi.org/10.1016/j.chemosphere.2015.12.022

    Article  CAS  Google Scholar 

  • Doubkova V, Marsalek P, Vecerek V (2017) The rapid determination of bromadiolone in liver and blood plasma by in-injector pyrolysis gas chromatography—ion trap tandem mass spectrometry. J Chromatogr, B: Anal Technol Biomed Life Sci. https://doi.org/10.1016/j.jchromb.2017.10.027

    Article  Google Scholar 

  • Du B, Price AE, Scott WC et al (2014) Comparison of contaminants of emerging concern removal, discharge, and water quality hazards among centralized and on-site wastewater treatment system effluents receiving common wastewater influent. Sci Total Environ 466–467:976–984. https://doi.org/10.1016/j.scitotenv.2013.07.126

    Article  CAS  Google Scholar 

  • Eason CT, Murphy EC, Wright GR, Spurr EB (2002) Assessment of risks of brodifacoum to non-target birds and mammals in New Zealand. Ecotoxicol 11:35–48. https://doi.org/10.1023/A:1013793029831

    Article  Google Scholar 

  • EBPF (2015) Sustainable use of rodenticides as biocides in the EU. CEFIC-European Biocidal Products Forum, Brussels

    Google Scholar 

  • eCA (2016a) Flocoumafen assessment report. Product-type 14 (Rodenticide) competent authority. European Union, The Netherlands

  • eCA (2016b) Coumatetralyl assessment report. Product-type 14 (Rodenticide) competent authority. European Union, Denmark

  • eCA (2016c) Brodifacoum assessment report. Product-type 14 (Rodenticide) competent authorities. European Union, The Netherlands and Italy

  • eCA (2016d) Chlorophacinone assessment report. Product-type 14 (Rodenticide) competent authority. European Union, Spain

  • eCA (2016e) Bromadiolone assessment report. Product-type 14 (Rodenticide) competent authority. European Union, Italy

  • eCA (2016f) Warfarin Assessment report. Product-type 14 (Rodenticide) competent authority. European Union, Ireland

  • eCA (2016g) Difenacoum assessment report. Product-type 14 (rodenticide) competent authority. European Union, Finland

  • eCA (2016h) Difethialone assessment report. Product-type 14 (Rodenticide) competent authority. European Union, Norway

  • ECHA (2017a) Guidance on the biocidal products regulation: volume IV environment—assessment and evaluation (parts B + C). European Chemicals Agency, Helsinki

    Google Scholar 

  • ECHA (2017b) Opinion of the Biocidal Products Committee on questions related to the comparative assessment of anticoagulant rodenticides. ECHA/BPC/145/2017. European Chemicals Agency, Helsinki

    Google Scholar 

  • Ejhed H, Fang J, Hansen K et al (2018) The effect of hydraulic retention time in onsite wastewater treatment and removal of pharmaceuticals, hormones and phenolic utility substances. Sci Total Environ 618:250–261. https://doi.org/10.1016/j.scitotenv.2017.11.011

    Article  CAS  Google Scholar 

  • Elliott JE, Rattner BA, Shore RF, Van Den Brink NW (2016) Paying the pipers: mitigating the impact of anticoagulant rodenticides on predators and scavengers. Biosci 66:401–407. https://doi.org/10.1093/biosci/biw028

    Article  Google Scholar 

  • Empson RA, Miskelly CM (1999) The risks, costs and benefits of using brodifacoum to eradicate rats from Kapiti Island, New Zealand. N Z J Ecol 23:241–254

    Google Scholar 

  • Endepols S (2002) Rodenticides—indispensable for safe food production. Pestic Outlook 13:231–232. https://doi.org/10.1039/b211694b

    Article  CAS  Google Scholar 

  • European Commission (2011) Regulation (EU) No 253/2011 of 15 March 2011 amending Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as regards Annex XIII. Off J Eur Union L 69:7–12

    Google Scholar 

  • European Commission (2016) Commission Regulation (EU) 2016/1179 of 19 July 2016 amending, for the purposes of its adaptation to technical and scientific progress, Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures. Off J Eur Union L 195:11–25

    Google Scholar 

  • European Commission (2017a) Commission Implementing Regulation (EU) 2017/1380 of 25 July 2017 renewing the approval of bromadiolone as an active substance for use in biocidal products of product-type 14. Off J Eur Union L 194:33–38

    Google Scholar 

  • European Commission (2017b) Commission Implementing Regulation (EU) 2017/1379 of 25 July 2017 renewing the approval of difenacoum as an active substance for use in biocidal products of product-type 14. Off J Eur Union L 194:27–32

    Google Scholar 

  • European Commission (2017c) Commission Implementing Regulation (EU) 2017/1376 of 25 July 2017 renewing the approval of warfarin as an active substance for use in biocidal products of product-type 14. Off J Eur Union L 194:9–14

    Google Scholar 

  • European Union (2009) Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. Off J Eur Union L 309:1–50

    Google Scholar 

  • European Union (2012) Regulation (EU) No 528/2012 of the European parliament and of the council of 22 May 2012 concerning the making available on the market and use of biocidal products. Off J Eur Union L 167:1–128

    Google Scholar 

  • Fernandez I, Santos A, Cancela ML, Laize V, Gavaia PJ (2014) Warfarin, a potential pollutant in aquatic environment acting through Pxr signaling pathway and gamma-glutamyl carboxylation of vitamin K-dependent proteins. Environ Pollut 194:86–95. https://doi.org/10.1016/j.envpol.2014.07.015

    Article  CAS  Google Scholar 

  • Fisher P (2013) Environmental residues of anticoagulants used for pest animal control. Landcare Research, Lincoln

    Google Scholar 

  • Fisher P, O’Connor C, Wright GR, Eason CT (2003) Persistence of 4 anticoagulant rodenticides in the livers of laboratory rats. Department of Conservation, Wellington

    Google Scholar 

  • Fisher P, Funnell E, Fairweather A, Brown L, Campion M (2012) Accidental discharge of brodifacoum baits into a freshwater lake: a case study. Bull Environ Contam Toxicol 88:226–228. https://doi.org/10.1007/s00128-011-0470-1

    Article  CAS  Google Scholar 

  • Focazio MJ, Kolpin DW, Barnes KK et al (2008) A national reconnaissance for pharmaceuticals and other organic wastewater contaminants in the United States-II) untreated drinking water sources. Sci Total Environ 402:201–216. https://doi.org/10.1016/j.scitotenv.2008.02.021

    Article  CAS  Google Scholar 

  • Fourel I, Damin-Pernik M, Benoit E, Lattard V (2017a) Core-shell LC–MS/MS method for quantification of second generation anticoagulant rodenticides diastereoisomers in rat liver in relationship with exposure of wild rats. J Chromatogr B 1041–1042:120–132. https://doi.org/10.1016/j.jchromb.2016.12.028

    Article  CAS  Google Scholar 

  • Fourel I, Damin-Pernik M, Benoit E, Lattard V (2017b) Cis-bromadiolone diastereoisomer is not involved in bromadiolone Red Kite (Milvus milvus) poisoning. Sci Total Environ 601–602:1412–1417. https://doi.org/10.1016/j.scitotenv.2017.06.011

    Article  CAS  Google Scholar 

  • Fournier-Chambrillon C, Berny PJ, Coiffier O et al (2004) Evidence of secondary poisoning of free-ranging riparian mustelids by anticoagulant rodenticides in France: implications for conservation of European mink (Mustela lutreola). J Wildl Dis 40:688–695. https://doi.org/10.7589/0090-3558-40.4.688

    Article  CAS  Google Scholar 

  • Fram MS, Belitz K (2011) Occurrence and concentrations of pharmaceutical compounds in groundwater used for public drinking-water supply in California. Sci Total Environ 409:3409–3417. https://doi.org/10.1016/j.scitotenv.2011.05.053

    Article  CAS  Google Scholar 

  • Garman GC (1991) Use of terrestrial arthropod prey by a stream-dwelling cyprinid fish. Environ Biol Fishes 30:325–331. https://doi.org/10.1007/BF02028848

    Article  Google Scholar 

  • Geduhn A (2015) Exposure of wildlife to anticoagulant rodenticides: how environmental drivers modulate the pathway of anticoagulant rodenticides from bait to predators. University of Münster, Münster

    Google Scholar 

  • Geduhn A, Esther A, Schenke D, Mattes H, Jacob J (2014) Spatial and temporal exposure patterns in non-target small mammals during brodifacoum rat control. Sci Total Environ 496:328–338. https://doi.org/10.1016/j.scitotenv.2014.07.049

    Article  CAS  Google Scholar 

  • Geduhn A, Jacob J, Schenke D, Keller B, Kleinschmidt S, Esther A (2015) Relation between intensity of biocide practice and residues of anticoagulant rodenticides in Red Foxes (Vulpes vulpes). PLoS ONE 10:e0139191. https://doi.org/10.1371/journal.pone.0139191

    Article  CAS  Google Scholar 

  • Geduhn A, Esther A, Schenke D, Gabriel D, Jacob J (2016) Prey composition modulates exposure risk to anticoagulant rodenticides in a sentinel predator, the barn owl. Sci Total Environ 544:150–157. https://doi.org/10.1016/j.scitotenv.2015.11.117

    Article  CAS  Google Scholar 

  • Gibs J, Stackelberg PE, Furlong ET, Meyer M, Zaugg SD, Lippincott RL (2007) Persistence of pharmaceuticals and other organic compounds in chlorinated drinking water as a function of time. Sci Total Environ 373:240–249. https://doi.org/10.1016/j.scitotenv.2006.11.003

    Article  CAS  Google Scholar 

  • Godfrey E, Woessner WW, Benotti MJ (2007) Pharmaceuticals in on-site sewage effluent and ground water, Western Montana. Ground Water 45:263–271. https://doi.org/10.1111/j.1745-6584.2006.00288.x

    Article  CAS  Google Scholar 

  • Goldade DA, Primus TM, Johnston JJ, Zapien DC (1998) Reversed-phase ion-pair high-performance liquid chromatographic quantitation of difethialone residues in whole-body rodents with solid-phase extraction cleanup. J Agric Food Chem 46:504–508. https://doi.org/10.1021/jf970715u

    Article  CAS  Google Scholar 

  • Gómez-Canela C, Lacorte S (2016) Comprehensive characterization of anticoagulant rodenticides in sludge by liquid chromatography–tandem mass spectrometry. Environ Sci Pollut Res Int 23:15739–15748. https://doi.org/10.1007/s11356-016-6743-9

    Article  CAS  Google Scholar 

  • Gómez-Canela C, Barata C, Lacorte S (2014a) Occurrence, elimination, and risk of anticoagulant rodenticides and drugs during wastewater treatment. Environ Sci Pollut Res 21:7194–7203. https://doi.org/10.1007/s11356-014-2714-1

    Article  CAS  Google Scholar 

  • Gómez-Canela C, Vazquez-Chica A, Lacorte S (2014b) Comprehensive characterization of rodenticides in wastewater by liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 406:345–358. https://doi.org/10.1007/s00216-013-7449-1

    Article  CAS  Google Scholar 

  • Gras LM, Patergnani M, Farina M (2012) Poison-based commensal rodent control strategies in urban ecosystems: some evidence against sewer-baiting. EcoHealth 9:75–79. https://doi.org/10.1007/s10393-012-0748-8

    Article  Google Scholar 

  • Guan F, Ishii A, Seno H, Watanabe-Suzuki K, Kumazawa T, Suzuki O (1999) Use of an ion-pairing reagent for high-performance liquid chromatography–atmospheric pressure chemical ionization mass spectrometry determination of anionic anticoagulant rodenticides in body fluids. J Chromatogr B Biomed Sci Appl 731:155–165. https://doi.org/10.1016/S0378-4347(99)00126-7

    Article  CAS  Google Scholar 

  • Gurung K, Ncibi MC, Fontmorin JM (2016) Incorporating submerged MBR in conventional activated sludge process for municipal wastewater treatment: a feasibility and performance assessment. J Membr Sci Technol. https://doi.org/10.4172/2155-9589.1000158

    Article  Google Scholar 

  • Hauck ZZ, Feinstein DL, van Breemen RB (2016) LC-MS-MS analysis of brodifacoum isomers in rat tissue. J Anal Toxicol 40:304–309. https://doi.org/10.1093/jat/bkw008

    Article  CAS  Google Scholar 

  • Hernández AM, Bernal J, Bernal JL, Martín MT, Caminero C, Nozal MJ (2013) Simultaneous determination of nine anticoagulant rodenticides in soil and water by LC–ESI-MS. J Sep Sci 36:2593–2601. https://doi.org/10.1002/jssc.201300310

    Article  CAS  Google Scholar 

  • Horak KE, Fisher PM, Hopkins B (2018) Pharmacokinetics of anticoagulant rodenticides in target and non-target organisms. In: van den Brink NW et al (eds) Anticoagulant rodenticides and wildlife. Springer, Cham, pp 87–108

    Google Scholar 

  • Hosea RC (2000) Exposure of non-target wildlife to anticoagulant rodenticides in California. In: Proceedings of the 19th vertebrate pest conference, pp 6–9

  • Huckle KR, Hutson DH, Warburton PA (1988) Elimination and accumulation of the rodenticide flocoumafen in rats following repeated oral administration. Xenobiotica 18:1465–1479. https://doi.org/10.3109/00498258809042269

    Article  CAS  Google Scholar 

  • Huerta B, Rodriguez-Mozaz S, Barcelo D (2012) Pharmaceuticals in biota in the aquatic environment: analytical methods and environmental implications. Anal Bioanal Chem 404:2611–2624. https://doi.org/10.1007/s00216-012-6144-y

    Article  CAS  Google Scholar 

  • Hughes J, Sharp E, Taylor MJ, Melton L, Hartley G (2013) Monitoring agricultural rodenticide use and secondary exposure of raptors in Scotland. Ecotoxicol 22:974–984. https://doi.org/10.1007/s10646-013-1074-9

    Article  CAS  Google Scholar 

  • Hunter K (1983a) Determination of coumarin anticoagulant rodenticide residues in animal tissue by high-performance liquid chromatography: II. Fluorescence detection using ion-pair chromatography. J Chromatogr A 270:277–283. https://doi.org/10.1016/S0021-9673(01)96372-2

    Article  CAS  Google Scholar 

  • Hunter K (1983b) Determination of coumarin anticoagulant rodenticide residues in animal tissue by high-performance liquid chromatography: I. Fluorescence detection using post-column techniques. J Chromatogr A 270:267–276. https://doi.org/10.1016/S0021-9673(01)96372-1

    Article  CAS  Google Scholar 

  • Imran M, Shafi H, Wattoo SA, Chaudhary MT, Usman HF (2015) Analytical methods for determination of anticoagulant rodenticides in biological samples. Forensic Sci Int 253:94–102. https://doi.org/10.1016/j.forsciint.2015.06.008

    Article  CAS  Google Scholar 

  • Jacob J, Buckle A (2018) Use of anticoagulant rodenticides in different applications around the world. In: van den Brink NW et al (eds) Anticoagulant rodenticides and wildlife. Springer, Cham, pp 11–43

    Google Scholar 

  • Jacquot M, Coeurdassier M, Couval G et al (2013) Using long-term monitoring of red fox populations to assess changes in rodent control practices. J Appl Ecol 50:1406–1414. https://doi.org/10.1111/1365-2664.12151

    Article  Google Scholar 

  • Jin MC, Chen XH, Zhu Y (2007) Determination of five 4-hydroxycoumarin rodenticides in animal liver tissues by ion chromatography with fluorescence detection. J Chromatogr A 1155:57–61. https://doi.org/10.1016/j.chroma.2006.12.074

    Article  CAS  Google Scholar 

  • Jin MC, Chen XH, Ye ML, Zhu Y (2008) Analysis of indandione anticoagulant rodenticides in animal liver by eluent generator reagent free ion chromatography coupled with electrospray mass spectrometry. J Chromatogr A 1213:77–82. https://doi.org/10.1016/j.chroma.2008.08.100

    Article  CAS  Google Scholar 

  • Jin MC, Cai MQ, Chen XH (2009) Simultaneous measurement of indandione-type rodenticides in human serum by liquid chromatography-electrospray ionization- tandem mass spectrometry. J Anal Toxicol 33:294–300. https://doi.org/10.1093/jat/33.6.294

    Article  CAS  Google Scholar 

  • Jones A (1996) HPLC determination of anticoagulant rodenticide residues in animal livers. Bull Environ Contam Toxicol 56:8–15. https://doi.org/10.1007/s001289900002

    Article  CAS  Google Scholar 

  • Kammerer B, Kahlich R, Ufer M, Schenkel A, Laufer S, Gleiter CH (2005) Stereospecific pharmacokinetic characterisation of phenprocoumon metabolites, and mass-spectrometric identification of two novel metabolites in human plasma and liver microsomes. Anal Bioanal Chem 383:909–917. https://doi.org/10.1007/s00216-005-0113-7

    Article  CAS  Google Scholar 

  • Kasprzyk-Hordern B (2010) Pharmacologically active compounds in the environment and their chirality. Chem Soc Rev 39:4466–4503. https://doi.org/10.1039/c000408c

    Article  CAS  Google Scholar 

  • Kinney CA, Furlong ET, Werner SL, Cahill JD (2006) Presence and distribution of wastewater-derived pharmaceuticals in soil irrigated with reclaimed water. Environ Toxicol Chem 25:317–326. https://doi.org/10.1897/05-187R.1

    Article  CAS  Google Scholar 

  • Koivisto E, Koivisto P, Hanski IK et al (2016) Prevalence of anticoagulant rodenticides in non-target predators and scavengers in Finland. Finnish Safety and Chemicals Agency, Helsinki

    Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT et al (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211. https://doi.org/10.1021/es011055j

    Article  CAS  Google Scholar 

  • Kolpin DW, Skopec M, Meyer MT, Furlong ET, Zaugg SD (2004) Urban contribution of pharmaceuticals and other organic wastewater contaminants to streams during differing flow conditions. Sci Total Environ 328:119–130. https://doi.org/10.1016/j.scitotenv.2004.01.015

    Article  CAS  Google Scholar 

  • Kopanke JH, Horak KE, Musselman E et al (2018) Effects of low-level brodifacoum exposure on the feline immune response. Sci Rep 8:8168. https://doi.org/10.1038/s41598-018-26558-3

    Article  CAS  Google Scholar 

  • Kostich MS, Lazorchak JM (2008) Risks to aquatic organisms posed by human pharmaceutical use. Sci Total Environ 389:329–339. https://doi.org/10.1016/j.scitotenv.2007.09.008

    Article  CAS  Google Scholar 

  • Kostich MS, Batt AL, Lazorchak JM (2014) Concentrations of prioritized pharmaceuticals in effluents from 50 large wastewater treatment plants in the US and implications for risk estimation. Environ Pollut 184:354–359. https://doi.org/10.1016/j.envpol.2013.09.013

    Article  CAS  Google Scholar 

  • Kotthoff M, Rüdel H, Jürling H et al (2018) First evidence of anticoagulant rodenticides in fish and suspended particulate matter: spatial and temporal distribution in German freshwater aquatic systems. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-018-1385-8

    Article  Google Scholar 

  • Krüger G, Solas H (2010) Nachbarn im Kanalnetz - Ergebnisse einer Fragebogenaktion zur Rattenbekämpfung. Korrespondenz Abwasser, Abfall 57:430–435

    Google Scholar 

  • Laasko S, Suomalainen K, Koivisto S (2010) Literature review on residues of anticoagulant rodenticides in non-target animals. Nordic Council of Ministers, Copenhagen

    Google Scholar 

  • Lambert O, Pouliquen H, Larhantec M, Thorin C, L’Hostis M (2007) Exposure of raptors and waterbirds to anticoagulant rodenticides (difenacoum, bromadiolone, coumatetralyl, coumafen, brodifacoum): epidemiological survey in Loire Atlantique (France). Bull Environ Contam Toxicol 79:91–94. https://doi.org/10.1007/s00128-007-9134-6

    Article  CAS  Google Scholar 

  • Lao W, Gan J (2012) Enantioselective degradation of warfarin in soils. Chirality 24:54–59. https://doi.org/10.1002/chir.21023

    Article  CAS  Google Scholar 

  • Larsen J (2003) Emission scenario document for biocides used as rodenticides. Danish EPA, Copenhagen

    Google Scholar 

  • Lemarchand C, Rosoux R, Berny P (2010) Organochlorine pesticides, PCBs, heavy metals and anticoagulant rodenticides in tissues of Eurasian otters (Lutra lutra) from upper Loire River catchment (France). Chemosphere 80:1120–1124. https://doi.org/10.1016/j.chemosphere.2010.06.026

    Article  CAS  Google Scholar 

  • Lemarchand C, Rosoux R, Talon C, Berny P (2014) Flagship species conservation and introduced species invasion: toxic aspects along Loire River (France). In: pesticides—toxic aspects, pp 53–79. InTech

  • Lewis RJ, Trager WF, Chan KK et al (1974) Warfarin stereochemical aspects of its metabolism and the interaction with phenylbutazone. J Clin Investig 53:1607–1617. https://doi.org/10.1172/jci107711

    Article  CAS  Google Scholar 

  • Lin Y, Shen X, Yuan Q, Yan Y (2013) Microbial biosynthesis of the anticoagulant precursor 4-hydroxycoumarin. Nat Commun 4:2603. https://doi.org/10.1038/ncomms3603

    Article  CAS  Google Scholar 

  • Liphatech (2013) The veterinarian’s guide to accidental rodenticide ingestion by dogs & cats. Liphatech Inc., Milwaukee

    Google Scholar 

  • Liu J, Xiong K, Ye X, Zhang J, Yang Y, Ji L (2015) Toxicity and bioaccumulation of bromadiolone to earthworm Eisenia fetida. Chemosphere 135:250–256. https://doi.org/10.1016/j.chemosphere.2015.04.058

    Article  CAS  Google Scholar 

  • López-Perea JJ, Camarero PR, Molina-López RA et al (2015) Interspecific and geographical differences in anticoagulant rodenticide residues of predatory wildlife from the Mediterranean region of Spain. Sci Total Environ 511:259–267. https://doi.org/10.1016/j.scitotenv.2014.12.042

    Article  CAS  Google Scholar 

  • Lund M (2015) Commensal rodents. In: Buckle AP, Smith RH (eds) Rodent pests and their control. CABI, Oxfordshire, pp 19–32

    Google Scholar 

  • Magiera S, Pardylla A, Baranowska I (2015) Effects of various factors of ultrasonic treatment on the extraction recovery of drugs from fish tissues. Ultrason Sonochem 26:388–398. https://doi.org/10.1016/j.ultsonch.2015.03.005

    Article  CAS  Google Scholar 

  • Mandel F, Wendt J, Vistocco R, Bachmann C (2000) Development of an LC/MS method for the analysis of rodenticides. Application note 5989-8440EN. Agilent Technologies, Waldbronn

    Google Scholar 

  • Marek LJ, Koskinen WC (2007) Multiresidue analysis of seven anticoagulant rodenticides by high-performance liquid chromatography/electrospray/mass spectrometry. J Agric Food Chem 55:571–576. https://doi.org/10.1021/jf061440y

    Article  CAS  Google Scholar 

  • Market Data Forecast (2017) Europe rodenticides market by type (non-anticoagulant, anticoagulant), by mode of application (pellets, powders, sprays), by end user (agricultural fields, urban centres, warehouses, pest control companies, household consumers), and by region-Industry analysis, size, share, growth, trends, and forecasts (2016–2021). Market Data Forecast Inc., Hyderabad

  • Marsalek P, Modra H, Doubkova V, Vecerek V (2015) Simultaneous determination of ten anticoagulant rodenticides in tissues by column-switching UHPLC-ESI-MS/MS. Anal Bioanal Chem. https://doi.org/10.1007/s00216-015-8954-1

    Article  Google Scholar 

  • Maruya KA, Dodder NG, Tang C, Lao W, Tsukada D (2015) Which coastal and marine environmental contaminants are truly emerging? Environ Sci Pollut Res 22:1644–1652. https://doi.org/10.1007/s11356-014-2856-1

    Article  CAS  Google Scholar 

  • Masuda BM, Fisher P, Beaven B (2015) Residue profiles of brodifacoum in coastal marine species following an island rodent eradication. Ecotoxicol Environ Saf 113:1–8. https://doi.org/10.1016/j.ecoenv.2014.11.013

    Article  CAS  Google Scholar 

  • McDonald RA, Harris S, Turnbull G, Brown P, Fletcher M (1998) Anticoagulant rodenticides in stoats (Mustela erminea) and weasels (Mustela nivalis) in England. Environ Pollut 103:17–23. https://doi.org/10.1016/S0269-7491(98)00141-9

    Article  CAS  Google Scholar 

  • McLeod L, Saunders G (2013) Pesticides used in the management of vertebrate pests in australia: a review. NSW Department of Primary Industries, New South Wales

    Google Scholar 

  • Medvedovici A, David F, Sandra P (1997) Determination of the rodenticides warfarin, diphenadione and chlorophacinone in soil samples by HPLC-DAD. Talanta 44:1633–1640. https://doi.org/10.1016/S0039-9140(97)00068-4

    Article  CAS  Google Scholar 

  • Morrison SA, Sieve KK, Ratajczak RE, Bringolf RB, Belden JB (2016) Simultaneous extraction and cleanup of high-lipid organs from white sturgeon (Acipenser transmontanus) for multiple legacy and emerging organic contaminants using QuEChERS sample preparation. Talanta 146:16–22. https://doi.org/10.1016/j.talanta.2015.08.021

    Article  CAS  Google Scholar 

  • Murphy G, Oldbury DJ (2002) Rat control by local authorities within the United Kingdom. In: Proceedings of the 4th international conference on urban pests,vol 246, pp 413–420

  • Murray M (2011) Anticoagulant rodenticide exposure and toxicosis in four species of birds of prey presented to a wildlife clinic in Massachusetts, 2006–2010. J Zoo Wildl Med 42:88–97

    Google Scholar 

  • Nakagawa L, de Masi E, Narciso E, Neto HM, Papini S (2015) Palatability and efficacy of bromadiolone rodenticide block bait previously exposed to environmental conditions. Pest Manag Sci 71:1414–1418. https://doi.org/10.1002/ps.3944

    Article  CAS  Google Scholar 

  • Newton I, Wyllie I, Freestone P (1990) Rodenticides in British barn owls. Environ Pollut 68:101–117. https://doi.org/10.1016/0269-7491(90)90015-5

    Article  CAS  Google Scholar 

  • Newton I, Wyllie I, Dale L (1997) Mortality causes in British Barn Owls (Tyto alba), based on 1,101 carcasses examined during 1963–1996. United States Department of Agriculture Forest Service, Winnipeg, pp 299–307

    Google Scholar 

  • Norström K, Remberger M, Kaj L et al (2009) Results from the Swedish National Screening Programme 2008. Subreport 3. Biocides: difenacoum. IVL Swedish Environmental Research Institute, Stockholm

    Google Scholar 

  • Ogilvie SC, Pierce RJ, Wright GRG, Booth LH, Eason CT (1997) Brodifacoum residue analysis in water, soil, invertebrates, and birds after rat eradication on Lady Alice Island. N Z J Ecol 21:195–197

    Google Scholar 

  • Oktay E (2015) Will NOACs become the new standard of care in anticoagulation therapy? Int J Cardiovasc Acad 1:1–4. https://doi.org/10.1016/j.ijcac.2015.06.007

    Article  Google Scholar 

  • Ondracek K, Bandouchova H, Hilscherova K et al (2015) Mixture toxicity of microcystin-LR, paraoxon and bromadiolone in Xenopus laevis embryos. Neuro Endocrinol Lett 36:114–119

    CAS  Google Scholar 

  • Parker R (2013) Gute Aussichten für die Zukunft. DpS 2:13–15

    Google Scholar 

  • Pérez S, Barceló D (2008) Applications of LC-MS to quantitation and evaluation of the environmental fate of chiral drugs and their metabolites. TrAC Trends Anal Chem 27:836–846. https://doi.org/10.1016/j.trac.2008.09.003

    Article  CAS  Google Scholar 

  • Pieper C, Holthenrich D, Schneider H (2014) Health risks from pest control products. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 57:574–584. https://doi.org/10.1007/s00103-013-1920-1

    Article  CAS  Google Scholar 

  • Pitt WC, Berentsen AR, Shiels AB et al (2015) Non-target species mortality and the measurement of brodifacoum rodenticide residues after a rat (Rattus rattus) eradication on Palmyra Atoll, tropical Pacific. Biol Conserv 185:36–46. https://doi.org/10.1016/j.biocon.2015.01.008

    Article  Google Scholar 

  • Primus TM, Wright G, Fisher P (2005) Accidental discharge of brodifacoum baits in a tidal marine environment: a case study. Bull Environ Contam Toxicol 74:913–919. https://doi.org/10.1007/s00128-005-0668-1

    Article  CAS  Google Scholar 

  • Ramirez AJ, Brain RA, Usenko S et al (2009) Occurrence of pharmaceuticals and personal care products in fish: results of a national pilot study in the United States. Environ Toxicol Chem 28:2587–2597. https://doi.org/10.1897/08-561.1

    Article  CAS  Google Scholar 

  • Rattner BA, Mastrota FN (2018) Anticoagulant rodenticide toxicity to non-target wildlife under controlled exposure conditions. In: van den Brink NW et al (eds) Anticoagulant rodenticides and wildlife. Springer, Cham, pp 45–86

    Google Scholar 

  • Rattner BA, Lazarus RS, Elliott JE, Shore RF, van den Brink N (2014) Adverse outcome pathway and risks of anticoagulant rodenticides to predatory wildlife. Environ Sci Technol 48:8433–8445. https://doi.org/10.1021/es501740n

    Article  CAS  Google Scholar 

  • Sage M, Fourel I, Coeurdassier M, Barrat J, Berny P, Giraudoux P (2010) Determination of bromadiolone residues in fox faeces by LC/ESI-MS in relationship with toxicological data and clinical signs after repeated exposure. Environ Res 110:664–674. https://doi.org/10.1016/j.envres.2010.07.009

    Article  CAS  Google Scholar 

  • Sanchez-Barbudo IS, Camarero PR, Mateo R (2012) Primary and secondary poisoning by anticoagulant rodenticides of non-target animals in Spain. Sci Total Environ 420:280–288. https://doi.org/10.1016/j.scitotenv.2012.01.028

    Article  CAS  Google Scholar 

  • Santos LH, Gros M, Rodriguez-Mozaz S et al (2013) Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: identification of ecologically relevant pharmaceuticals. Sci Total Environ 461:302–316. https://doi.org/10.1016/j.scitotenv.2013.04.077

    Article  CAS  Google Scholar 

  • Sato S (2005) Coumarin rodenticides. In: Suzuki O, Watanabe K (eds) Drugs and poisons in humans. Springer, Heidelberg, pp 599–608

    Google Scholar 

  • Schaff JE, Montgomery MA (2013) An HPLC-HR-MS-MS method for identification of anticoagulant rodenticides in blood. J Anal Toxicol 37:321–325. https://doi.org/10.1093/jat/bkt036

    Article  CAS  Google Scholar 

  • Schmolz E, Wieck S, Friesen A (2014) Nagetierbekämpfung mit Antikoagulanzien—was ändert sich durch die Biozid-Zulassung für die Praxis? UMID 2:79–86

    Google Scholar 

  • Schwabe U, Paffrath D, Ludwig W-D, Klauber J (eds) (2017) Arzneiverordnungs-report. Springer, Heidelberg

    Google Scholar 

  • Shore RF, Birks JDS, Afsar A, Wienburg CL, Kitchener AC (2003) Spatial and temporal analysis of second-generation anticoagulant rodenticide residues in polecats (Mustela putorius) from throughout their range in Britain, 1992–1999. Environ Pollut 122:183–193. https://doi.org/10.1016/S0269-7491(02)00297-X

    Article  CAS  Google Scholar 

  • Siers SR, Shiels AB, Goldade DA et al (2016) Wake atoll fish tissue sampling and analysis three years after an island wide rodenticide application. Unpublished Report QA 2241, USDA, APHIS, WS, National Wildlife Research Center, Hilo, HI, USA

  • Smith LL, Liang B, Booth MC, Filigenzi MS, Tkachenko A, Gaskill CL (2017) Development and validation of quantitative ultraperformance liquid chromatography-tandem mass spectrometry assay for anticoagulant rodenticides in liver. J Agric Food Chem 65:6682–6691. https://doi.org/10.1021/acs.jafc.7b02280

    Article  CAS  Google Scholar 

  • Steffen D (2014) Orientierende Untersuchungen niedersächsischer Oberflächengewässer auf aktuell in Deutschland zugelassener Pflanzenschutzmittel und auf Stoffe der sog. Metaboliten-Liste. Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten-und Naturschutz (NLWKN), Hannover-Hildesheim, Germany

  • Streit B (1998) Bioaccumulation of contaminants in fish. In: Braunbeck T, Hinton DE, Striet B (eds) Fish ecotoxicology. Birkhäuser, Basel

    Google Scholar 

  • Tosh DG, McDonald RA, Bearhop S et al (2011) Does small mammal prey guild affect the exposure of predators to anticoagulant rodenticides? Environ Pollut 159:3106–3112. https://doi.org/10.1016/j.envpol.2011.03.028

    Article  CAS  Google Scholar 

  • Tosh DG, McDonald RA, Bearhop S, Llewellyn NR, Montgomery WI, Shore RF (2012) Rodenticide exposure in wood mouse and house mouse populations on farms and potential secondary risk to predators. Ecotoxicology 21:1325–1332. https://doi.org/10.1007/s10646-012-0886-3

    Article  CAS  Google Scholar 

  • Townsend MG, Entwisle P, Hart ADM (1995) Use of two halogenated biphenyls as indicators of non-target exposure during rodenticides treatments. Bull Environ Contam Toxicol 54:526–533. https://doi.org/10.1007/BF00192595

    Article  CAS  Google Scholar 

  • UBA (2011) Identifizierung und Bewertung ausgewählter Arzneimittel und ihrer Metaboliten (Ab- und Umbauprodukte) im Wasserkreislauf. Texte 46/2011, Umweltbundesamt, Dessau-Roßlau

  • UBA (2014) Authorisation of anticoagulant rodenticides in Germany—risk mitigation measures, best practice code and FAQs. Umweltbundesamt, Dessau-Roßlau

    Google Scholar 

  • van den Brink NW, Elliott JE, Shore RF, Rattner BA (eds) (2018) Anticoagulant rodenticides and wildlife. Springer, Cham

    Google Scholar 

  • Vudathala D, Cummings M, Murphy L (2010) Analysis of multiple anticoagulant rodenticides in animal blood and liver tissue using principles of QuEChERS Method. J Anal Toxicol 34:273–279. https://doi.org/10.1093/jat/34.5.273

    Article  CAS  Google Scholar 

  • Walker LA, Turk A, Long SM, Wienburg CL, Best J, Shore RF (2008) Second generation anticoagulant rodenticides in tawny owls (Strix aluco) from Great Britain. Sci Total Environ 392:93–98. https://doi.org/10.1016/j.scitotenv.2007.10.061

    Article  CAS  Google Scholar 

  • Walker LA, Llewellyn NR, Pereira MG et al (2010) Anticoagulant rodenticides in predatory birds 2007 and 2008: a Predatory Bird Monitoring Scheme (PBMS) report. Center for Ecology and Hydrology, Lancaster

    Google Scholar 

  • Wardlaw J, Hughes J, Monie C, Reay G (2016) Pesticide usage in Scotland—rodenticide use by local authorities 2015. Science and Advice for Scottish Agriculture, Edinburgh

    Google Scholar 

  • Wardlaw J, Hughes J, Monie C, Reay G (2017) Pesticide usage in Scotland—rodenticides on arable farms 2016. Science and Advice for Scottish Agriculture, Edinburgh

    Google Scholar 

  • Watkins CD, Winemiller KO, Mora MA et al (2014) Assessment of mosquitofish (Gambusia affinis) health indicators in relation to domestic wastewater discharges in suburbs of Houston, USA. Bull Environ Contam Toxicol 93:13–18. https://doi.org/10.1007/s00128-014-1248-z

    Article  CAS  Google Scholar 

  • Weigt S, Huebler N, Strecker R, Braunbeck T, Broschard TH (2012) Developmental effects of coumarin and the anticoagulant coumarin derivative warfarin on zebrafish (Danio rerio) embryos. Reprod Toxicol 33:133–141. https://doi.org/10.1016/j.reprotox.2011.07.001

    Article  CAS  Google Scholar 

  • Wode F, van Baar P, Dunnbier U et al (2015) Search for over 2000 current and legacy micropollutants on a wastewater infiltration site with a UPLC-high resolution MS target screening method. Water Res 69:274–283. https://doi.org/10.1016/j.watres.2014.11.034

    Article  CAS  Google Scholar 

  • Wong LT, Solomonraj G (1980) Biliary and urinary excretion of [14C]warfarin in rabbits. Xenobiotica 10:201–210. https://doi.org/10.3109/00498258009033746

    Article  CAS  Google Scholar 

  • Zielinska A, Lichti CF, Bratton S et al (2008) Glucuronidation of monohydroxylated warfarin metabolites by human liver microsomes and human recombinant UDP glucuronosyltransferases. J Pharmacol Exp Ther 324:139–148. https://doi.org/10.1124/jpet.107.129858

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support of this study was provided by the German Environment Agency through Grant FKZ 3716 67 403 0.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Julia Regnery or Marvin Brinke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Regnery, J., Friesen, A., Geduhn, A. et al. Rating the risks of anticoagulant rodenticides in the aquatic environment: a review. Environ Chem Lett 17, 215–240 (2019). https://doi.org/10.1007/s10311-018-0788-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-018-0788-6

Keywords

Navigation