Skip to main content
Log in

Reactivity of sulfate radicals with natural organic matters

  • Original Paper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Advanced oxidation processes based on sulfate radicals (SO ·−4 ) are capable of efficiently degrade organic pollutants from ground, surface and wastewaters. However, this degradation may be limited by aqueous natural organic matter (NOM). Here we measured the absolute rate constants of reaction of SO ·−4 with four types of organic matter: two fulvic acids and two lake organic matter. We used laser flash photolysis technique to monitor the SO ·−4 decay and the formation of the transients from organic matters. Reaction rate constants comprised between 1530 and 3500 s−1 mgC−1 L were obtained by numerical analysis of differential equations and the weighted average of the extinction coefficient of the generated organic matters radicals between 400 and 800 M−1 cm−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anipsitakis GP, Dionysiou DD (2004) Radical generation by the interaction of transition metals with common oxidants. Environ Sci Technol 38(13):3705–3712. doi:10.1021/es035121o

    Article  CAS  Google Scholar 

  • Bao ZC, Barker JR (1996) Temperature and ionic strength effects on some reactions involving sulfate radical [SO4 (aq)]. J Phys Chem 100(23):9780–9787. doi:10.1021/jp9603703

    Article  CAS  Google Scholar 

  • Brezonik PL, Fulkerson-Brekken J (1998) Nitrate-induced photolysis in natural waters: controls on concentrations of hydroxyl radical photo-intermediates by natural scavenging agents. Environ Sci Technol 32(19):3004–3010. doi:10.1021/es9802908

    Article  CAS  Google Scholar 

  • Buxton GV, Bydder M, Salmon GA (1999) The reactivity of chlorine atoms in aqueous solution Part II. The equilibrium SO4 + Cl-ClNsbd+ SO4 2−. Phys Chem Chem Phys 1(2):269–273. doi:10.1039/A807808D

  • Chen W, Westerhoff P, Leenheer JA, Booksh K (2003) Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environ Sci Technol 37(24):5701–5710. doi:10.1021/es034354c

    Article  CAS  Google Scholar 

  • Gara PMD, Bosio GN, Gonzalez MC, Russo N, del Carmen Michelini M, Diez RP, Mártire DO (2009) A combined theoretical and experimental study on the oxidation of fulvic acid by the sulfate radical anion. Photochem Photobiol Sci 8:992–997. doi:10.1039/b900961b

    Article  CAS  Google Scholar 

  • George C, Chovelon JM (2002) A laser flash photolysis study of the decay of SO4 and Cl2 radical anions in the presence of Clin aqueous solutions. Chemosphere 47(4):385–393. doi:10.1016/S0045-6535(01)00313-7

    Article  CAS  Google Scholar 

  • Hori H, Yamamoto A, Hayakawa E, Taniyasu S, Yamashita N, Kutsuna S, Kiatagawa H, Arakawa R (2005) Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant. Environ Sci Technol 39(7):2383–2388. doi:10.1021/es0484754

    Article  CAS  Google Scholar 

  • Ivanova KL, Glebovb EM, Plyusninb VF, Ivanovb YV, Grivinb VP, Bazhinb NM (2000) Laser flash photolysis of sodium persulfate in aqueous solution with additions of dimethylformamide. J Photochem Photobiol A: Chem 133(1–2):99–104. doi:10.1016/S1010-6030(00)00218-5

    Article  Google Scholar 

  • Ji Y, Shi Y, Kong D, Lu J (2016) Degradation of roxarsone in a sulfate radical mediated oxidation process and formation of polynitrated by-products. RSC Adv 6:82040–82048. doi:10.1039/c6ra17764f

    Article  CAS  Google Scholar 

  • Lau TK, Chu W, Graham NJ (2007) The aqueous degradation of butylated hydroxyanisole by UV/S2O82-: study of reaction mechanisms via dimerization and mineralization. Environ Sci Technol 41(2):613–619. doi:10.1021/es061395a

    Article  CAS  Google Scholar 

  • Lutze HV, Bircher S, Rapp I, Kerlin N, Bakkour R, Geisler M, von Sonntag C, Schmidt TC (2015) Degradation of chlorotriazine pesticides by sulfate radicals and the influence of organic matter. Environ Sci Technol 49(3):1673–1680. doi:10.1021/es503496u

    Article  CAS  Google Scholar 

  • Martin MV, Mignone RA, Rosso JA, David Gara P, Pis Diez R, Borsarelli CD, Mártire DO (2017) Transient spectroscopic characterization and theoretical modeling of fulvic acid radicals formed by UV-A radiation. J Photochem Photobiol A 332:571–579. doi:10.1016/j.jphotochem.2016.10.007

    Article  CAS  Google Scholar 

  • Matta R, Tlili S, Chiron S, Barbati S (2011) Removal of carbamazepine from urban wastewater by sulfate radical oxidation. Environ Chem Lett 9(3):347–353. doi:10.1007/s10311-010-0285-z

    Article  CAS  Google Scholar 

  • McElroy WJ, Waygood SJ (1990) Kinetics of the reactions of the SO4 radical with SO −24 , S2O −28 , H2O and Fe2+. J Chem Soc, Faraday Trans 86:2557–2564. doi:10.1039/FT9908602557

    Article  CAS  Google Scholar 

  • Neta P, Huie RE, Ross AB (1988) Rate constants for reactions of inorganic radicals in aqueous solution. J Phys Chem Ref Data 17:1027–1284. doi:10.1063/1.555808

    Article  CAS  Google Scholar 

  • Nie M, Yang Y, Zhang Z, Yan C, Wang X, Li H, Dong W (2014) Degradation of chloramphenicol by thermally activated persulfate in aqueous solution. Chem Eng J 246:373–382. doi:10.1016/j.cej.2014.02.047

    Article  CAS  Google Scholar 

  • Richard C, Guyot G, Rivaton A, Trubetskaya O, Trubetskoj O, Cavani L, Ciavatta C (2007) Spectroscopic approach for elucidation of structural peculiarities of Andisol soil humic acid fractionated by SEC-PAGE setup. Geoderma 142(1–2):210–216. doi:10.1016/j.geoderma.2007.08.019

    Article  CAS  Google Scholar 

  • Schuler RH, Buzzard GK (1976) Pulse radiolysis experiments: synthesis and analysis of composite spectra. Int J Radiat Phys Chem 8(5):563–574. doi:10.1016/0020-7055(76),90023-1

    Article  CAS  Google Scholar 

  • Yang Y, Pignatello JJ, Ma J, Mitch WA (2014) Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs). Environ Sci Technol 48(4):2344–2351. doi:10.1021/es404118q

    Article  CAS  Google Scholar 

  • Zhang R, Sun P, Boyer TH, Zhao L, Huang CH (2015) Degradation of pharmaceuticals and metabolite in synthetic human urine by UV, UV/H2O2, and UV/PDS. Environ Sci Technol 49(5):3056–3066. doi:10.1021/es504799n

    Article  CAS  Google Scholar 

  • Zhou L, Zheng W, Ji Y, Zhang J, Zeng C, Zhang Y, Wang Q, Yang X (2013) Ferrous-activated persulfate oxidation of arsenic (III) and diuron in aquatic system. J Hazard Mater 263:422–430. doi:10.1016/j.jhazmat.2013.09.056

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean-Marc Chovelon or Claire Richard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Sleiman, M., Ferronato, C. et al. Reactivity of sulfate radicals with natural organic matters. Environ Chem Lett 15, 733–737 (2017). https://doi.org/10.1007/s10311-017-0646-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-017-0646-y

Keywords

Navigation