Skip to main content

Advertisement

Log in

Nanofertilizers and nanopesticides for agriculture

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

The excess use of mineral fertilizers and unsafe pesticides has led to pollution and serious health issues. Nanoscience may solve those issues by providing nanomaterials of higher performance. Here we reviewed the development of nanofertilizers and nanopesticides and their applications on crop systems. Nanofertilizers such as N, P, K, Fe, Mn, Zn, Cu, Mo and carbon nanotubes show better release and targeted delivery efficiency. Nanopesticides such as Ag, Cu, SiO2, ZnO and nanoformulations show better broad-spectrum pest protection efficiency in comparison with conventional pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adhikari T, Kundu S, Biswas AK, Tarafdar JC, Subba Rao A (2015) Characterization of zinc oxide nano particles and their effect on growth of maize (Zea mays L.) plant. J Plant Nutr 38(10):1505–1515

    Article  CAS  Google Scholar 

  • Adhikari T, Sarkar D, Mashayekhi H, Xing B (2016) Growth and enzymatic activity of maize (Zea mays L.) plant: solution culture test for copper dioxide nano particles. J Plant Nutr 39(1):99–115

    Article  CAS  Google Scholar 

  • Agrawal S, Rathore P (2014) Nanotechnology pros and cons to agriculture: a review. Int J Curr Microbiol App Sci 3:43–55. doi:10.13140/2.1.1648.1926

    Article  Google Scholar 

  • Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050, the 2012 revision. 2012, ESA Working Paper No. 12–03. FAO, Rome

  • Batsmanova L, Gonchar L, Taran NY, Okanenko A (2013) Using a colloidal solution of metal nanoparticles as micronutrient fertiliser for cereals. http://essuir.sumdu.edu.ua/handle/123456789/35441

  • Bollag JM, Myers CJ, Minard RD (1992) Biological and chemical interactions of pesticides with soil organic matter. Sci Total Environ 123:205–217

    Article  Google Scholar 

  • Bramhanwade K, Shende S, Bonde S, Gade A, Rai M (2016) Fungicidal activity of Cu nanoparticles against Fusarium causing crop diseases. Environ Chem Lett 14(2):229–235

    Article  CAS  Google Scholar 

  • Burman U, Saini M, Kumar P (2013) Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol Environ Chem 95(4):605–612

    Article  CAS  Google Scholar 

  • Cañas JE, Long M, Nations S, Vadan R, Dai L, Luo M et al (2008) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922–1931. doi:10.1897/08-117.1

    Article  Google Scholar 

  • Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594. doi:10.1016/j.tifs.2011.09.004

    Article  CAS  Google Scholar 

  • Chhipa H, Kaushik N (2015) Development of nano-bio-pesticide using Iron and Eucalyptus plant extract and their application in pest management. In: Conference Proceeding of symposium on recent advances in biotechnology for food and fuel, TERI, New Delhi 19–20 Nov 2015

  • Chhipa H, Joshi P (2016) Nanofertilisers, nanopesticides and nanosensors in agriculture. In: Ranjan S, Dasgupta N, Lichtfouse E (eds) Nanoscience in food and agriculture 1, Sustainable agriculture reviews, vol 20. Springer, pp 247–282. doi:10.1007/978-3-319-39303-2

    Google Scholar 

  • Chookhongkha N, Sopondilok T, Photchanachai S (2012) Effect of chitosan and chitosan nanoparticles on fungal growth and chilli seed quality. In: Proceedings of international conference on postharvest pest and disease management in exporting horticultural crops-PPDM2012 973:231-237. doi: 10.17660/ActaHortic.2013.973.32

  • Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L et al (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17:5255–5262. doi:10.1021/cm0505244

    Article  CAS  Google Scholar 

  • Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE et al (2009) Controlling eutrophication: nitrogen and phosphorus. Science 323:1014–1015. doi:10.1126/science.1167755

    Article  CAS  Google Scholar 

  • Delfani M, Firouzabadi MB, Farrokhi N, Makarian H (2014) Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun Soil Sci Plant Anal 45:11. doi:10.1080/00103624.2013.863911

    Article  CAS  Google Scholar 

  • DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91. doi:10.1038/nnano.2010.2

    Article  CAS  Google Scholar 

  • Ditta A, Arsha, M, Ibrahim M (2015) Nanoparticles in sustainable agricultural crop production: applications and perspectives. In: Nanotechnology and plant sciences. Springer International Publishing, pp 55–75. doi:10.1007/978-3-319-14502-0_4

    Google Scholar 

  • Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharromán C, Moya J (2009) Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles. Nanotechnology 20:505701. doi:10.1088/0957-4484/20/50/505701

    Article  CAS  Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed Nanotechnol Biol Med 5:382–386. doi:10.1016/j.nano.2009.06.005

    Article  CAS  Google Scholar 

  • Gao F, Hong F, Liu C, Zheng L, Su M, Wu X et al (2006) Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach. Biol Trace Elem Res 111:239–253. doi:10.1385/BTER:111:1:239

    Article  CAS  Google Scholar 

  • Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47:10645–10652. doi:10.1021/es402249b

    Article  CAS  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803. doi:10.1016/j.biotechadv.2011.06.007

    Article  CAS  Google Scholar 

  • Giannousi K, Avramidis I, Dendrinou-Samara C (2013) Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv 3:21743–21752. doi:10.1039/C3RA42118J

    Article  CAS  Google Scholar 

  • Giannousi K, Sarafidis G, Mourdikoudis S, Pantazaki A, Dendrinou-Samara C (2014) Selective synthesis of Cu2O and Cu/Cu2O nps: antifungal activity to yeast saccharomyces cerevisiae and DNA interaction. Inorg Chem 53:9657–9666. doi:10.1021/ic501143z

    Article  CAS  Google Scholar 

  • Gopal M, Gogoi R, Srivastava C, Kumar R, Singh PK, Nair KK et al (2011) Nanotechnology and its application in plant protection. In: Thind TS et al (eds) Plant pathology in India: vision 2030. pp 224–230

  • Guo LJ (2004) Recent progress in nanoimprint technology and its applications. J Phys D Appl Phys 37(11):R123

    Article  CAS  Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215. doi:10.1016/j.micres.2010.03.003

    Article  CAS  Google Scholar 

  • Ho VA, Le PT, Nguyen TP, Nguyen CK, Nguyen VT, Tran NQ (2015) Silver core-shell nanoclusters exhibiting strong growth inhibition of plant-pathogenic fungi. J Nanomater 2015:13

    Google Scholar 

  • Hussein MZ, Yahaya AH, Zainal Z, Kian LH (2005) Nanocomposite-based controlled release formulation of an herbicide, 2, 4-dichlorophenoxyacetate incapsulated in zinc–aluminium-layered double hydroxide. Sci Technol Adv Mater 6(8):956–962

    Article  Google Scholar 

  • Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A et al (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A Mol Biomol Spectrosc 90:78–84. doi:10.1016/j.saa.2012.01.006

    Article  CAS  Google Scholar 

  • Joseph T, Morrison M (2006) Nanotechnology in agriculture and food. Eur Nanotechnol Gateway. ftp://cordis.europa.eu/pub/nanotechnology/docs/nanotechnology_in_agriculture_and_food.pdf

  • Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 77:36–51. doi:10.1016/j.ijbiomac.2015.02.039

    Article  CAS  Google Scholar 

  • Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6:2128–2135. doi:10.1021/nn204643g

    Article  CAS  Google Scholar 

  • Khodakovskaya MV, Kim BS, Kim JN, Alimohammadi M, Dervishi E, Mustafa T et al (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9:115–123. doi:10.1002/smll.201201225

    Article  CAS  Google Scholar 

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70. doi:10.1016/j.cropro.2012.01.007

    Article  CAS  Google Scholar 

  • Kottegoda N, Munaweera I, Madusanka N, Karunaratne V (2011) A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Curr Sci 101:73–78

    CAS  Google Scholar 

  • Kumar R, Sharon M, Choudhary AK (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2:83–92

    Google Scholar 

  • Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank A-M et al (2012) Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ 431:197–208. doi:10.1016/j.scitotenv.2012.04.073

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250. doi:10.1016/j.envpol.2007.01.016

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585

    Article  CAS  Google Scholar 

  • Liu R, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci Rep 4:6. doi:10.1038/srep05686

    Article  CAS  Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139. doi:10.1016/j.scitotenv.2015.01.104

    Article  CAS  Google Scholar 

  • Liu X, Zhang F, Zhang S, He X, Wang R, Fei Z et al (2004) Responses of peanut to nano-calcium carbonate. Plant Nutr Fertil Sci 11:385–389

    CAS  Google Scholar 

  • Liu X-M, Feng Z-B, Zhang S-Q, Zhang F-D, Zhang J-F, Xiao Q, Wang Y-J (2006) Preparation and testing of cementing nano-subnano composites of slower controlled release of fertilizers. Sci Agric Sin 39:7

    Google Scholar 

  • Lu C, Zhang C, Wen J, Wu G, Tao M (2002) Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21:168–171

    CAS  Google Scholar 

  • Mahajan P, Dhoke SK, Khanna AS (2011) Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J Nanotechnol 2011:7. doi:10.1155/2011/696535

    Article  CAS  Google Scholar 

  • Mattos BD, Magalhaes WL (2016) Biogenic nanosilica blended by nanofibrillated cellulose as support for slow-release of tebuconazole. J Nanoparticle Res 18(9):274

    Article  Google Scholar 

  • Millan G, Agosto F, Vazquez M (2008) Use of clinoptilolite as a carrier for nitrogen fertilizers in soils of the Pampean regions of Argentina. Cienc Investig Agrar 35:293–302

    Google Scholar 

  • Mondal KK, Mani C (2012) Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodis pv. punicae, the incitant of pomegranate bacterial blight. Ann Microbiol 62:889–893. doi:10.1007/s13213-011-0382-7

    Article  CAS  Google Scholar 

  • Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl 7:63. doi:10.2147/NSA.S39409

    Article  CAS  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163. doi:10.1016/j.plantsci.2010.04.012

    Article  CAS  Google Scholar 

  • Najafi Disfani M, Mikhak A, Kassaee MZ, Maghari A (2016) Effects of nano Fe/SiO2 fertilizers on germination and growth of barley and maize. Arch Agrono Soil Sci. doi:10.1080/03650340.2016.1239016

    Article  Google Scholar 

  • Nekrasova GF, Ushakova OS, Ermakov AE, Uimin MA, Byzov IV (2011) Effects of copper(II) ions and copper oxide nanoparticles on Elodea densa Planch. Russ J Ecol 42:458–463. doi:10.1134/S1067413611060117

    Article  CAS  Google Scholar 

  • Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M et al (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7:8972–8980. doi:10.1021/nn4034794

    Article  CAS  Google Scholar 

  • Owolade O, Ogunleti D (2008) Effects of titanium dioxide on the diseases, development and yield of edible cowpea. J Plant Prot Res 48(3):329–336

    Article  Google Scholar 

  • Paret ML, Vallad GE, Averett DR, Jones JB, Olson SM (2013) Photocatalysis: effect of light-activated nanoscale formulations of TiO2 on Xanthomonas perforans and control of bacterial spot of tomato. Phytopathol 103:228–236. doi:10.1094/PHYTO-08-12-0183-R

    Article  CAS  Google Scholar 

  • Parisi C, Vigani M, Cerezo ER (2014) Proceedings of a workshop on “Nanotechnology for the agricultural sector: from research to the field”. Institute for Prospective and Technological Studies, Joint Research Centre

  • Park KH (2006) Korea patent application: WPI ACC NO: 2006-489267/200650. Preparation method antibacterial wheat flour by using silver nanoparticles

  • Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22(3):295–302

    Article  Google Scholar 

  • Parveen A, Mazhari BBZ, Rao S (2016) Impact of bio-nanogold on seed germination and seedling growth in Pennisetum glaucum. Enzyme Microbial Technol 95:107–111

    Article  CAS  Google Scholar 

  • Pérez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65:540–545. doi:10.1002/ps.1732

    Article  CAS  Google Scholar 

  • Pradhan S, Patra P, Das S, Chandra S, Mitra S, Dey KK, Akbar S, Palit P, Goswami A (2013) Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: a detailed molecular, biochemical, and biophysical study. Environ Sci Technol 47:9. doi:10.1021/es402659t

    Article  CAS  Google Scholar 

  • Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TS, Sajanlal PR, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35(6):905–927

    Article  CAS  Google Scholar 

  • Qian K, Shi T, Tang T, Zhang S, Liu X, Cao Y (2011) Preparation and characterization of nano-sized calcium carbonate as controlled release pesticide carrier for validamycin against Rhizoctonia solani. Microchim Acta 173:51–57. doi:10.1007/s00604-010-0523-x

    Article  CAS  Google Scholar 

  • Rajesh S, Raja DP, Rathi JM, Sahayaraj K (2012) Biosynthesis of silver nanoparticles using Ulva fasciata (Delile) ethyl acetate extract and its activity against Xanthomonas campestris pv. malvacearum. J Biopest 5:119–128

    CAS  Google Scholar 

  • Robinson DKR, Morrison MJ (2009) Nanotechnology developments for the agrifood sector - report of the observatory, NANO. May 2009. www.observatorynano.eu

  • Raliya R, Tarafdar J (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2:48–57. doi:10.1007/s40003-012-0049-z

    Article  CAS  Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498. doi:10.1021/jf104517j

    Article  CAS  Google Scholar 

  • Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma S, Pal A (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J biol Macromole 62:677–683. doi:10.1016/j.ijbiomac.2013.10.012

    Article  CAS  Google Scholar 

  • Scott N, Chen H (2013) Nanoscale science and engineering for agriculture and food systems. Ind Biotechnol 9:17–18. doi:10.1089/ind.2013.1555

    Article  Google Scholar 

  • Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197:143–148. doi:10.1007/s11270-008-9797-6

    Article  CAS  Google Scholar 

  • Solanki P, Bhargava A, Chhipa H, Jain N, Panwar J (2015) Nano-fertilizers and their smart delivery system. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture. Springer, pp 81–101. doi: 10.1007/978-3-319-14024-7_4

    Google Scholar 

  • Srinivasan C, Saraswathi R (2010) Nano-agriculture—carbon nanotubes enhance tomato seed germination and plant growth. Curr Sci 99:2

    Google Scholar 

  • Taha RA, Hassan MM, Ibrahim EA, Baker NHA, Shaaban EA (2016) Carbon nanotubes impact on date palm in vitro cultures. Plant Cell Tissue Organ Cult 127(2):525–534

    Article  CAS  Google Scholar 

  • Taran NY, Gonchar OM, Lopatko KG, Batsmanova LM, Patyka MV, Volkogon MV (2014) The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L. Nanoscale Res Lett 9:289. doi:10.1186/1556-276X-9-289

    Article  CAS  Google Scholar 

  • United States Department of Agriculture (USDA) (2012) In: Census of agriculture 2012. DIALOG. https://www.agcensus.usda.gov/Publications/2012/Full_Report/Volume_1,_Chapter_1_US/usv1.pdf. Accessed 20 Nov 2016

  • Wang L, Li X, Zhang G, Dong J, Eastoe J (2007) Oil-in-water nanoemulsions for pesticide formulations. J Colloid Interface Sci 314:230–235. doi:10.1016/j.jcis.2007.04.079

    Article  CAS  Google Scholar 

  • World Bank Data (2015) DIALOG. http://data.worldbank.org. Accessed 8 Nov 2016

  • Yearla SR, Padmasree K (2016) Exploitation of subabul stem lignin as a matrix in controlled release agrochemical nanoformulations: a case study with herbicide diuron. Environ Sci Pollut Res 23(18):18085–18098. doi:10.1007/s11356-016-6983-8

    Article  CAS  Google Scholar 

  • Yuvaraj M, Subramanian KS (2015) Controlled-release fertilizer of zinc encapsulated by a manganese hollow core shell. Soil Sci Plant Nutr 61(2):319–326

    Article  CAS  Google Scholar 

  • Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989. doi:10.1038/35103590

    Article  CAS  Google Scholar 

  • Zhao L, Hernandez-Viezcas JA, Peralta-Videa JR, Bandyopadhyay S, Peng B, Munoz B, Keller AA, Gardea-Torresdey JL (2013a) ZnO nanoparticle fate in soil and zinc bioaccumulation in corn plants (Zea mays) influenced by alginate. Environ Sci Process Impacts 15(1):260–266

    Article  CAS  Google Scholar 

  • Zhao L, Sun Y, Hernandez-Viezcas JA, Servin AD, Hong J, Niu G et al (2013b) Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. J Agric Food Chem 61:11945–11951. doi:10.1021/jf404328e

    Article  CAS  Google Scholar 

  • Zhao L, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun Y, Niu G, Servin A, Nunez JE, Duarte-Gardea M, Gardea-Torresdey JL (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agri Food Chem 62(13):2752–2759

    Article  CAS  Google Scholar 

  • Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83–91. doi:10.1385/BTER:104:1:08

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemraj Chhipa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhipa, H. Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett 15, 15–22 (2017). https://doi.org/10.1007/s10311-016-0600-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-016-0600-4

Keywords

Navigation