Skip to main content
Log in

Clean electrochemical deposition of calcium carbonate to prevent scale formation in cooling water systems

  • Original Paper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Calcium carbonate (CaCO3) deposited in water systems leads to scale formation, decreases flow rate, reduces heat transfer and favors microbial proliferation of toxic bacteria such as Legionella. This issue may be solved by electrochemical deposition, without adding toxic chemicals. Therefore, we studied here the deposition of CaCO3 by electrochemical reduction of oxygen into hydroxide ions with stainless steel and titanium (Ti) working electrodes. Analysis was done using cyclic voltammetry, chronoamperometry, dynamic impedance spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy (EDX) coupled with X-ray diffraction (XRD). Results show that optimal formation of CaCO3 is done at −1.2 V with the stainless steel electrode and at −1.4 V for the Ti electrode. More negative potentials induce the formation of calcite. Using the Ti electrode, we found that aragonite is the major form (82 %), with only one capacitive loop. Using the stainless steel electrode at 1.2 V, we found 47 % of aragonite and 38 % of calcite. Overall, our findings demonstrate the feasibility of the electrochemical deposition of CaCO3 in cooling water systems, without the addition of any chemical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barchiche C, Deslouis C, Festy D, Gil O, Refait P, Touzain S, Tribollet B (2003) Characterization of calcareous deposits in artificial seawater by impedance techniques: 3—Deposit of CaCO3 in the presence of Mg(II). Electrochim Acta 48:1645–1654

    Article  CAS  Google Scholar 

  • Ben Amor Y, Bousselmi L, Tribollet B, Triki E (2010) Study of the effect of magnesium concentration on the deposit of allotropic forms of calcium carbonate and related carbon steel interface behavior. Electrochimica Acta 55:4820–4826

    Article  CAS  Google Scholar 

  • Camargo JA, Alonso Á (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ Int 32:831–849

    Article  CAS  Google Scholar 

  • Canadian Centre of Occupational Health and Safety: OSH Answers Fact Sheets (2006) http://www.ccohs.ca/oshanswers/diseases/legion.html. Accessed 2013

  • De Robertis E, Neves RS, Abrantes LM, Motheo AJ (2005) Pd–P electroless deposition on carbon steel: an electrochemical impedance spectroscopy study. J Electroanal Chem 581:86–92

    Article  Google Scholar 

  • Deslouis C, Festy D, Gil O, Rius G, Touzain S, Tribollet B (1998) Characterization of calcareous deposits in artificial sea water by impedance techniques—I. Deposit of CaCO3 without Mg (OH)2. Electrochim Acta 43:1891–1901

    Article  CAS  Google Scholar 

  • Deslouis C, Festy D, Gil O, Maillot V, Touzain S, Tribollet B (2000) Characterization of calcareous deposits in artificial sea water by impedances techniques: 2-deposit of Mg (OH)2 without CaCO3. Electrochim Acta 45:1837–1845

    Article  CAS  Google Scholar 

  • Euvrard M, Membrey F, Filiatre C, Pignolet C, Foissy A (2006) Kinetic study of the electrocrystallization of calcium carbonate on metallic substrates. J Cryst Growth 291:428–435

    Article  CAS  Google Scholar 

  • Feng L, van Hullebusch ED, Rodrigo MA, Esposito G, Oturan MA (2013) Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A Rev Chem Eng J 228:944–964

    CAS  Google Scholar 

  • François Desbiens IG-S, Caroline Huot (2012) Éclosion de légionellose dans la ville de Québec. Québec, Canada, été 2012. Agence de la santé et des services sociaux de la Capitale Nationale. http://www.dspq.qc.ca/documents/RapportLegionellose05122012.pdf

  • Gabrielli C, Keddam M, Khalil A, Rosset R, Zidoune M (1997) Study of calcium carbonate scales by electrochemical impedance spectroscopy. Electrochimica Acta 42:1207–1218

    Article  CAS  Google Scholar 

  • Gabrielli C, Keddam M, Khalil A, Maurin G, Perrot H, Rosset R, Zidoune M (1998) Quartz crystal microbalance investigation of electrochemical calcium carbonate scaling. J Electrochem Soc 145:2386–2396

    Article  CAS  Google Scholar 

  • Gabrielli C, Maurin G, Poindessous G, Rosset R (1999) Nucleation and growth of calcium carbonate by an electrochemical scaling process. J Cryst Growth 200:236–250

    Article  CAS  Google Scholar 

  • Hui F, Lédion J (2002) Evaluation methods for the scaling power of water. J Eur D Hydrol 33:55–74

    CAS  Google Scholar 

  • Karoui H, Riffault B, Jeannin M, Kahoul A, Gil O, Ben Amor M, Tlili MM (2013) Electrochemical scaling of stainless steel in artificial seawater: role of experimental conditions on CaCO3 and Mg(OH)2 formation. Desalination 311:234–240. doi:10.1016/j.desal.2012.07.011

    Article  CAS  Google Scholar 

  • Macdonald JR, Barsoukov E (2005) Impedance spectroscopy: theory, experiment, and applications. History 1:8

    Google Scholar 

  • Marín-Cruz J, Cabrera-Sierra R, Pech-Canul M, González I (2004) Characterization of different allotropic forms of calcium carbonate scales on carbon steel by electrochemical impedance spectroscopy. J Appl Electrochem 34:337–343

    Article  Google Scholar 

  • Rakitin A, Kichigin V (2009) Electrochemical study of calcium carbonate deposition on iron. Effect Anion Electrochimica Acta 54:2647–2654

    Article  CAS  Google Scholar 

  • Reddy M, Nancollas G (1973) Calcite crystal growth inhibition by phosphonates. Desalination 12:61–73

    Article  CAS  Google Scholar 

  • Rietveld H (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    Article  CAS  Google Scholar 

  • Rinat J, Korin E, Soifer L, Bettelheim A (2005) Electrocrystallization of calcium carbonate on carbon-based electrodes. J Electroanal Chem 575:195–202

    Article  CAS  Google Scholar 

  • Rosset R (1992) Les procédés physiques antitartre: mythe ou réalité L’actualité chimique:1–2

  • Rosset R, Sok P, Poindessous G, Amor MB, Walha K (1998) Caractérisation de la compacité des dépôts de carbonate de calcium d’eaux géothermales du Sud tunisien par impédancemétrie. Comptes Rendus de l’Académie des Sciences-Series IIC-Chemistry 1:751–759

    Article  CAS  Google Scholar 

  • Westin K-J, Rasmuson ÅC (2005) Crystal growth of aragonite and calcite in presence of citric acid, DTPA, EDTA and pyromellitic acid. J Coll Interf Sci 282:359–369

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Sincere thanks are extended to Mitacs for their financial contribution to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Drogui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dirany, A., Drogui, P. & El Khakani, M.A. Clean electrochemical deposition of calcium carbonate to prevent scale formation in cooling water systems. Environ Chem Lett 14, 507–514 (2016). https://doi.org/10.1007/s10311-016-0579-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-016-0579-x

Keywords

Navigation