Skip to main content
Log in

Kulturmedien, Kryokonservierung und Co. – relevante Einflussfaktoren im In‑vitro-Fertilisations-Labor

Culture media, cryopreservation and Co.: relevant influencing factors in the in vitro fertilization laboratory

  • Leitthema
  • Published:
Gynäkologische Endokrinologie Aims and scope

Zusammenfassung

Die extrakorporale Befruchtung, die Kultur von Embryonen und die Kryokonservierung sind hinsichtlich der Gesundheit der entstehenden Kinder und möglichen Langzeitfolgen trotz mehr als 4 Mio. geborener Kinder weltweit noch nicht vollständig untersucht. Einerseits mangelte es anfänglich an einer vollständigen Erfassung von Patientinnen- und Patientendaten, andererseits sind viele Laborparameter bis heute nur zentrumsintern dokumentiert. Neben Gesundheitsdaten nach einer In-vitro-Fertilisations(IVF)-Behandlung bzw. intrazytoplasmatischen Spermieninjektion (ICSI) gibt es für den Einsatz von kontinuierlichen und sequenziellen Medien („1-step“ und „2-step“) relativ viele Daten zur Gesundheit der Kinder. Bei anderen Methoden, wie der Kryokonservierung mittels „slow freezing“ oder Vitrifikation, liegen häufig nur Geburtsgewicht, Geburtsmodus und Abortrate vor. Eine vollständige Datenerfassung, die neben allen Patientinnen- und Patientenparametern auch die Labordaten berücksichtigt, ist derzeit noch nicht verfügbar.

Abstract

Extracorporal fertilization, embryo culture and cryopreservation have not been fully investigated as yet regarding the health of the resulting children and possible long-term effects, despite the fact that more than 4 million children have been born worldwide. On the one hand, comprehensive recording of patient data was initially lacking, while on the other many laboratory parameters are still only documented internally at the respective centres. In addition to health data after in vitro fertilization (IVF) treatment or intracytoplasmic sperm injection (ICSI), there is a relatively large amount of data on childrenʼs health for the use of continuous and sequential media (“1-step” and “2-step”). With other methods, such as cryopreservation using “slow freezing” or vitrification, often only birth weight, birth mode and miscarriage rate are available. Comprehensive data collection, including all patient parameters as well as laboratory data, is not available yet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Simmank J (2018) Diese Kinder sind doch nicht so gesund. https://www.zeit.de/wissen/gesundheit/2018-09/kuenstlichebefruchtung-zeugung-kinderwunsch-fortpflanzung-kinder-gesundheit. Zugegriffen: 24.08.2020

  2. Meister TA, Rimoldi SF, Soria R et al (2018) Association of assisted reproductive technologies with arterial hypertension during adolescence. J Am Coll Cardiol. https://doi.org/10.1016/j.jacc.2018.06.060

    Article  PubMed  Google Scholar 

  3. Scherrer U, Rimoldi SF, Rexhaj E et al (2012) Systemic and pulmonary vascular dysfunction in children conceived by assisted reproductive technologies. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.111.071183

    Article  PubMed  Google Scholar 

  4. Scherrer U, Rexhaj E, Allemann Y et al (2015) Cardiovascular dysfunction in children conceived by assisted reproductive technologies. Eur Heart J. https://doi.org/10.1093/eurheartj/ehv145

    Article  PubMed  Google Scholar 

  5. Rimoldi SF, Sartori C, De Marchi SF et al (2010) Increased carotid intima-media thickness in children conceived by assisted reproductive technologies. Eur Heart J 31:823–824

    Article  Google Scholar 

  6. Scherrer U, Rimoldi S, Sartori C et al (2014) Vascular dysfunction in children conceived by assisted reproductive technologies: underlying mechanisms and future implications. Swiss Med Wkly. https://doi.org/10.4414/smw.2014.13973

    Article  PubMed  Google Scholar 

  7. Rimoldi SF, Sartori C, Rexhaj E et al (2015) Antioxidants improve vascular function in children conceived by assisted reproductive technologies: A randomized double-blind placebo-controlled trial. Eur J Prev Cardiol. https://doi.org/10.1177/2047487314535117

    Article  PubMed  Google Scholar 

  8. Engelen L, Ferreira I, Stehouwer CD et al (2012) Reference intervals for common carotid intima-media thickness measured with echotracking: relation with risk factors. Eur Heart J 34:2368–2380. https://doi.org/10.1093/eurheartj/ehs380

    Article  CAS  PubMed  Google Scholar 

  9. Guo X‑Y, Liu X‑M, Jin L et al (2017) Cardiovascular and metabolic profiles of offspring conceived by assisted reproductive technologies: a systematic review and meta-analysis. Fertil Steril 107:622–631.e5. https://doi.org/10.1016/j.fertnstert.2016.12.007

    Article  PubMed  Google Scholar 

  10. Zandstra H, van Montfoort APA, Dumoulin JCM et al (2020) Increased blood pressure and impaired endothelial function after accelerated growth in IVF/ICSI children. Hum Reprod Open. https://doi.org/10.1093/hropen/hoz037

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bonduelle M, Bergh C, Niklasson A et al (2004) Medical follow-up study of 5‑year-old ICSI children. RBMOnline 9:91–101

    Google Scholar 

  12. Catford SR, McLachlan RI, O’Bryan MK, Halliday JL (2017) Long-term follow-up of intra-cytoplasmic sperm injection-conceived offspring compared with in vitro fertilization-conceived offspring: a systematic review of health outcomes beyond the neonatal period. Andrology 5:610–621

    Article  CAS  Google Scholar 

  13. Dumoulin J, Land J, Van Montfoort A et al (2010) Effect of in vitro culture of human embryos on birthweight of newborns. Hum Reprod 25:605–612. https://doi.org/10.1093/humrep/dep456

    Article  PubMed  Google Scholar 

  14. KiGGS: Studie zur Gesundheit von Kindern und Jugendlichen in Deutschland (2019) https://www.rki.de/DE/Content/Gesundheitsmonitoring/Studien/Kiggs/kiggs_node.html. Zugegriffen: 24.08.2020

  15. Orvieto R, Kirshenbaum M, Gleicher N (2020) Is embryo cryopreservation causing macrosomia-and what else? Front Endocrinol 11:19. https://doi.org/10.3389/fendo.2020.00019

    Article  Google Scholar 

  16. Zhu J, Li M, Chen L et al (2014) The protein source in embryo culture media influences birthweight: a comparative study between G1 v5 and G1-PLUS v5. Hum Reprod 29:1387–1392. https://doi.org/10.1093/humrep/deu103

    Article  CAS  PubMed  Google Scholar 

  17. Alviggi C, Conforti A, Carbone I et al (2018) Influence of cryopreservation on perinatal outcome after blastocyst- vs cleavage-stage embryo transfer: systematic review and meta-analysis. Ultrasound Obstet Gynecol 51:54–63. https://doi.org/10.1002/uog.18942

    Article  CAS  PubMed  Google Scholar 

  18. Boulet SL, Mehta A, Kissin DM et al (2015) Trends in use of and reproductive outcomes associated with intracytoplasmic sperm injection. JAMA 313:255–263. https://doi.org/10.1001/jama.2014.17985

    Article  PubMed  Google Scholar 

  19. Sullivan-Pyke CS, Senapati S, Mainigi MABK (2017) In Vitro fertilization and adverse obstetric and perinatal outcomes. Semin Perinatol 41:345–353

    Article  Google Scholar 

  20. (2019) DIR Jahrbuch 2018. J für Reproduktionsmedizin und Endokrinol 279–315

  21. Cavoretto P, Candiani M, Giorgione V et al (2018) Risk of spontaneous preterm birth in singleton pregnancies conceived after IVF/ICSI treatment: meta-analysis of cohort studies. Ultrasound Obstet Gynecol 51:43–53. https://doi.org/10.1002/uog.18930

    Article  CAS  PubMed  Google Scholar 

  22. Yeung EH, Kim K, Purdue-Smithe A et al (2018) Child health: is it really assisted reproductive technology that we need to be concerned about? Semin Reprod Med 36:183–194. https://doi.org/10.1055/s-0038-1675778

    Article  PubMed  Google Scholar 

  23. Chapin RE, Robbins WA, Schieve LA et al (2004) Off to a good start: the influence of pre- and periconceptional exposures, parental fertility, and nutrition on children’s health. Environ Health Perspect 112:69–78. https://doi.org/10.1289/ehp.6261

    Article  PubMed  PubMed Central  Google Scholar 

  24. Vuong LN, Ly TT, Nguyen NA et al (2020) Development of children born from freeze-only versus fresh embryo transfer: follow-up of a randomized controlled trial. Fertil Steril. https://doi.org/10.1016/j.fertnstert.2020.04.041

    Article  PubMed  Google Scholar 

  25. Sunde A, Brison D, Dumoulin J et al (2016) Time to take human embryo culture seriously†. Hum Reprod 31:2174–2182. https://doi.org/10.1093/humrep/dew157

    Article  PubMed  Google Scholar 

  26. Gardner DK, Schoolcraft WB (1998) Human embryo viability: what determines developmental potential, and can it be assessed? J Assist Reprod Genet 15:455–458. https://doi.org/10.1023/a:1022543901455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lane M, Hooper K, Gardner DK (2001) Effect of essential amino acids on mouse embryo viability and ammonium production. J Assist Reprod Genet 18:519–525. https://doi.org/10.1023/a:1016657228171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lane M, Gardner DK (1997) Nonessential amino acids and glutamine decrease the time of the first three cleavage divisions and increase compaction of mouse zygotes in vitro. J Assist Reprod Genet 14:398–403. https://doi.org/10.1007/BF02766148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Boostanfar R, Jain JK, Slater CC et al (2001) The prognostic significance of day 3 embryo cleavage stage on subsequent blastocyst development in a sequential culture system. J Assist Reprod Genet 18:548–550. https://doi.org/10.1023/a:1011953907332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mitchell M, Cashman KS, Gardner DK et al (2009) Disruption of mitochondrial malate-aspartate shuttle activity in mouse blastocysts impairs viability and fetal growth. Biol Reprod 80:295–301. https://doi.org/10.1095/biolreprod.108.069864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ermisch AF, Herrick JR, Pasquariello R et al (2020) A novel culture medium with reduced nutrient concentrations supports the development and viability of mouse embryos. Sci Rep 10:9263. https://doi.org/10.1038/s41598-020-66019-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gardner D, Schoolcraft W (1999) Culture and transfer of human blastocysts. Curr Opin Obstet Gynecol 11:307–311. https://doi.org/10.1097/00001703-199906000-00013

    Article  CAS  PubMed  Google Scholar 

  33. Summers M, Biggers J (2003) Chemically defined media and the culture of mammalian preimplantation embryos: historical perspective and current issues. Hum Reprod Update 9:557–582

    Article  CAS  Google Scholar 

  34. Ng K, Mingels R, Morgan H et al (2018) In vivo oxygen, temperature and pH dynamics in the female reproductive tract and their importance in human conception: a systematic review. Hum Reprod Update 24:15–34. https://doi.org/10.1093/humupd/dmx028

    Article  PubMed  Google Scholar 

  35. Macklon N, Pieters M, Hassan M et al (2002) A prospective randomized comparison of sequential versus monoculture systems for in-vitro human blastocyst development. Hum Reprod 17:2700–2705. https://doi.org/10.1093/humrep/17.10.2700

    Article  CAS  PubMed  Google Scholar 

  36. Sfontouris IA, Martins WP, Nastri CO et al (2016) Blastocyst culture using single versus sequential media in clinical IVF: a systematic review and meta-analysis of randomized controlled trials. J Assist Reprod Genet 33:1261–1272. https://doi.org/10.1007/s10815-016-0774-5

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cimadomo D, Scarica C, Maggiulli R et al (2018) Continuous embryo culture elicits higher blastulation but similar cumulative delivery rates than sequential: a large prospective study. J Assist Reprod Genet 35:1329–1338. https://doi.org/10.1007/s10815-018-1195-4

    Article  PubMed  PubMed Central  Google Scholar 

  38. Castillo CM, Harper J, Roberts SA et al (2020) The impact of selected embryo culture conditions on ART treatment cycle outcomes: a UK national study. Hum Reprod Open. https://doi.org/10.1093/hropen/hoz031

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zandstra H, Smits L, van Kuijk S, Al E (2018) No effect of IVF culture medium on cognitive development of 9‑year-old children. Hum Reprod Open 4:hoy18. https://doi.org/10.1093/hropen/hoy018

    Article  Google Scholar 

  40. Bouillon C, Léandri R, Desch L, Al E (2016) Does embryo culture medium influence the health and development of children born after in vitro fertilization? PLoS ONE 11:e150857. https://doi.org/10.1371/journal.pone.0150857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Duyme M, Zorman M, Tervo R, Capron C (2011) French norms and validation of the Child Development Inventory (CDI): inventaire du Developpement de l’Enfant (IDE). Clin Pediatr 50:636–647. https://doi.org/10.1177/0009922811398390

    Article  Google Scholar 

  42. Pinborg A (2018) Short- and long-term outcomes in children born after assisted reproductive technology. BJOG. https://doi.org/10.1111/1471-0528.15437

    Article  PubMed  Google Scholar 

  43. Sonntag B, Eisemann N, Elsner S, Al E (2020) Pubertal development and reproductive hormone levels of singleton ICSI offspring in adolescence: results of a prospective controlled study. Hum Reprod 35:968–976. https://doi.org/10.1093/humrep/deaa021

    Article  CAS  PubMed  Google Scholar 

  44. Norrman E, Petzold M, Bergh C, Wennerholm U‑B (2020) School performance in children born after ICSI. Hum Reprod 35:340–354. https://doi.org/10.1093/humrep/dez281

    Article  PubMed  PubMed Central  Google Scholar 

  45. Oldereid NB, Wennerholm U‑B, Pinborg A et al (2018) The effect of paternal factors on perinatal and paediatric outcomes: a systematic review and meta-analysis. Hum Reprod Update 24:320–389. https://doi.org/10.1093/humupd/dmy005

    Article  PubMed  Google Scholar 

  46. Yeung EH, Sundaram R, Bell EM et al (2016) Examining infertility treatment and early childhood development in the upstate KIDS study. JAMA Pediatr 170:251–258. https://doi.org/10.1001/jamapediatrics.2015.4164

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cai G, Sun X, Zhang L, Hong Q (2014) Association between maternal body mass index and congenital heart defects in offspring: a systematic review. Am J Obstet Gynecol 211:91–117. https://doi.org/10.1016/j.ajog.2014.03.028

    Article  PubMed  Google Scholar 

  48. Berntsen S, Söderström-Anttila V, Wennerholm U‑B et al (2019) The health of children conceived by ART: “the chicken or the egg?”. Hum Reprod 25:137–158. https://doi.org/10.1093/humupd/dmz001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Baston-Büst.

Ethics declarations

Interessenkonflikt

D.M. Baston-Büst gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von der Autorin keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

B. Sonntag, Hamburg

G. Griesinger, Lübeck

R. Felberbaum, Kempten

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baston-Büst, D.M. Kulturmedien, Kryokonservierung und Co. – relevante Einflussfaktoren im In‑vitro-Fertilisations-Labor. Gynäkologische Endokrinologie 18, 199–203 (2020). https://doi.org/10.1007/s10304-020-00337-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10304-020-00337-8

Schlüsselwörter

Keywords

Navigation