Skip to main content
Log in

Zur Genetik und Pathogenese des Uterus myomatosus

Genetics and pathogenesis of uterine leiomyoma

  • Leitthema
  • Published:
Gynäkologische Endokrinologie Aims and scope

Zusammenfassung

Eine Beziehung zwischen dem Leiomyomwachstum und dem hormonellen Status der Patientinnen ist eindeutig zu erkennen, aber ein Zusammenhang zwischen der Ätiologie des Uterus myomatosus und der Steroidhormone als Ursache des Tumorwachstums ist nicht erwiesen. Möglicherweise regen Östrogen und Progesteron die Proliferation der Myome durch Aktivierung von Protoonkogenen und Wachstumsfaktoren an. Das familiäre Auftreten der Myome ist durch Keimzellmutationen im Fumarathydrogenase-Gen auf dem Chromosom 1 bedingt. Zahlreiche zytogenetisch erfassbare chromosomale Aberrationen finden sich im Myom mit einer Präferenz für die Chromosomen 12 und 7. Da nur ein Teil der uterinen Myome Aberrationen des Chromosomensatzes aufweist, kommt dies als allgemeine Ursache nicht in Frage . Die Aberrationen könnten lediglich ein sekundäres Phänomen in diesem Typus eines benignen Tumors darstellen, jedoch mit Auswirkungen z. B. auf das Wachstumspotenzial des Tumors. Die Microarray-Technik stellt ein neues Werkzeug dar, um die Gene zu erfassen, die in den Leiomyomen des Uterus hoch- bzw. runterreguliert werden.

Abstract

A time-related correlation between the growth of uterine leiomyomata and hormonal status is evident; however, a causative correlation of the etiology of uterine leiomyoma and steroid hormones has not yet been demonstrated. Estrogen and progesterone may mediate the proliferation of the fibroids by activating protooncogenes and growth factors. Germline mutations in the fumarate hydratase gene located on chromosome 1 predispose to uterine fibroids. A number of different chromosomal aberrations are found in many uterine fibroids, preferentially involving chromosomes 12 and 7. These aberrations have to be considered a secondary phenomena rather than causative, though they may stimulate the growth potential of the tumor. Microarray technology represents a new tool for identifying genes responsible for up- or downregulation of genes related to the development of leiomyomata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Algadir A (2003) Uterusmyome. Ätiologische Faktoren und Rezeptorverhalten. Dissertationschrift. Martin-Luther-Universität Halle-Wittenberg

  2. Amant F, Huys E, Geurts-Moespot A et al. (2003) Ethnic variations in uterine leiomyoma biology are not caused by differences in myometrial estrogen receptor alpha levels. J Soc Gynecol Investig 10:105–109

    Article  CAS  PubMed  Google Scholar 

  3. Andersen J (1996) Growth factors and cytokines in uterine leiomyomas. Semin Reprod Endocrinol 14:269–282

    CAS  PubMed  Google Scholar 

  4. Baird D, Dunson DB, Hill MC et al. (2003) High cumulative incidence of uterine leiomyoma in black and white women: ultrasound evidence. Am J Obstet Gynecol 188:100–107

    Article  PubMed  Google Scholar 

  5. Catherino WH, Segars JH (2003) Microarray analysis in fibroids: which gene list is the correct list? Fertil Steril 80:293–294

    Article  PubMed  Google Scholar 

  6. Dallenbach-Hellweg, Dietel M (1997) Weibliches Genitale. In: Remmele W (Hrsg) Pathologie, Bd. 4. Springe, Berlin Heidelberg New York Tokyo, S 1–131

  7. Freije WA (2003) Genome biology and gynecology: the application of oligonucleotide microarrays to leiomyomata. Fertil Steril 80:277–278

    Article  PubMed  Google Scholar 

  8. Garman ME, Blumberg MA, Ernst R, Raimer SS (2003) Familial leiomyomatosis: a review and discussion of pathogenesis. Dermatol 207:210–213

    Article  CAS  Google Scholar 

  9. Hennig Y, Deichert U, Bonk U et al. (1999) Chromosomal translocation affecting 12q14–15 but not deletions of the long arm of chromosome 7 associated with a growth advantage of uterine smooth muscle cells. Mol Hum Reprod 5:1150–1154

    Article  CAS  PubMed  Google Scholar 

  10. Hsieh YY, Chang CC, Tsai FJ et al. (2003) Estrogen receptor thymidine-adenine dinucleotide repeat polymorphism is associated with susceptibility to leiomyoma. Fertil Steril 79:96–99

    Article  PubMed  Google Scholar 

  11. Hu J, Surti U (1991) Subgroups of uterine leiomyomas based on cytogenetic analysis. Hum Pathol 22:1009–1016

    CAS  PubMed  Google Scholar 

  12. Kjerulff KH, Langenberg P, Seidman JD et al. (1996) Uterine leiomyomas. Racial differences in severity, symptoms and age at diagnosis. J Reprod Med 41:483–490

    CAS  PubMed  Google Scholar 

  13. Lehtonen R, Kiuru M, Vanharanta S et al. (2004) Bilallelic inactivation of fumarate hydratase (FH) occurs in nonsyndromic uterine leiomyomas but is rare in other tumors. Am J Pathol 164:17–22

    CAS  PubMed  Google Scholar 

  14. Marshall LM, Spiegelman D, Barbieri RL et al. (1997) Variation in the incidence of uterine leiomyoma among premenopausal women by age and race. Obstet Gynecol 90:967–973

    Article  CAS  PubMed  Google Scholar 

  15. Martinez-Mir A, Glaser B, Chuang GS et al. (2003) Germline fumarate hydratase mutations in families with multiple cutaneous and uterine leiomyomata. J Invest Dermatol 121:741–744

    Article  CAS  PubMed  Google Scholar 

  16. Mine N, Kurose K, Nagai H et al. (2001) Gene fusion involving HMGIC is a frequent aberration in uterine leiomyomas. J Hum Genet 46:408–412

    Article  CAS  PubMed  Google Scholar 

  17. Mitelman F, Johansson B, Mertens F (2003) Mitelman database of chromosome aberrations in cancer. http://cgap.nci.nih.gov/Chromosomes/Mitelman

  18. Moran C, Murillo HA, de la Cruz SI et al. (1998) Uterine leiomyomatosus in the female in late menopause. Ginecol Obst Mex 66:358–361

    CAS  Google Scholar 

  19. Nilbert M, Heim S, Mandahl N et al. (1989) Different karyotypic abnormalities, t(1;6) and del(7), in two uterine leiomyomas from the same patient. Cancer Genet Cytogenet 42:51–53

    Article  CAS  PubMed  Google Scholar 

  20. Nilbert M, Heim S (1990) Uterine leiomyomata cytogenetics. Genes Chromosomes Cancer 2:3–13

    PubMed  Google Scholar 

  21. Roth TM, Gustilo-Ashby T, Barber MD, Myers ER (2003) Effects of race and clinical factors on short-term outcomes of abdominal myomectomy. Obstet Gynecol 101:881–884

    Article  PubMed  Google Scholar 

  22. Sadan O, van Iddekinge B, Savage N et al. (1988) Ethnic variation in estrogen and progesterone receptor concentration in leiomyoma and normal myometrium. Gynecol Endocrinol 2:275–282

    CAS  PubMed  Google Scholar 

  23. Patrikis MI, Bryan EJ, Thomas NA et al. (2003) Mutation analysis of CDP, TP53, and KRAS in uterine leiomyomas. Mol Carcinog 37:61–64

    Article  CAS  PubMed  Google Scholar 

  24. Piva M, Flieger O, Rider V (1996) Growth fator control of cultured rat uterine stromal proliferation is progesterone dependent. Biol Reprod 55:1333–1342

    CAS  PubMed  Google Scholar 

  25. Rein MS (2002) Advances in uterine leiomyoma research: the progesterone hypothesis. Eviron Health Perspect 108 [Suppl 5]:791–793

    Google Scholar 

  26. Rein MS, Powell WL, Walters FC et al. (1998) Cytogenetic abnormalities in uterine myomas are associated with myoma size. Mol Hum Reprod 4:83–86

    Article  CAS  PubMed  Google Scholar 

  27. Tomlinson IP, Alam NA, Rowan AJ et al. (2002) Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet 30:406–410

    CAS  PubMed  Google Scholar 

  28. Tsibris JC, Segars J, Coppola D et al. (2002) Insights in gene arrays in the development and growth regulation of uterine leiomyomata. Fertil Steril 78:114–121

    Article  PubMed  Google Scholar 

  29. Tsibris JC, Segars J, Enkemann S et al. (2003) Fertil Steril 80:279–281

    Article  PubMed  Google Scholar 

  30. Vanni R, Nieddu M, Paoli R, Lecca U (1989) Uterine leiomyoma cytogenetics. I. Rearrangements of chromosme 12. Cancer Genet Cytogenet 37:49–54

    Article  CAS  PubMed  Google Scholar 

  31. Virchow R (1854) Über Makroglossie und pathologische Neubildung quergestreifter Muskelfasern. Virchow Arch Pathol Anat 7:126–138

    Google Scholar 

  32. Wang H, Mahadevappa M, Yamamoto K et al. (2003) Distinctive proliferative pahse differences in gene expression in human myometrium and leiomyomata. Fertil Steril 80:266–276

    Article  PubMed  Google Scholar 

  33. Wanschura S, Kazmierczak B, Schoenmakers E et al. (1996) Regional fine mapping of the multiple-aberration region involved in uterine leiomyoma, lipoma, and pleomorphic adenoma of the salivary gland to 12q15. Genes Chromosome Cancer 15:195–196

    Google Scholar 

  34. Wisot AL, Neimand KM, Rosenthal AH (1969) Symptomatic myoma in a 13-year-old girl. Am J Obstet Gynecol 105:639–641

    CAS  PubMed  Google Scholar 

  35. Wu X, Wang H, Englund K et al. (2002) Expression of progesterone receptors A and B and insulin-like growth factor-I in human myometrium and fibroids after treatment with a gonadotropin-releasing hormone analogue. Fertil Steril 78:985–993

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Johannisson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johannisson, R. Zur Genetik und Pathogenese des Uterus myomatosus. Gynäkologische Endokrinologie 2, 27–32 (2004). https://doi.org/10.1007/s10304-004-0053-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10304-004-0053-x

Schlüsselwörter

Keywords

Navigation