Skip to main content
Log in

Methods and assessments of two-way time synchronization based on BDS-3 Ka-band satellite-ground link observations

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

The Beidou-3 system (BDS-3) satellites are deployed, equipped with an inter-satellite link (ISL) payload, so that the satellite–satellite or satellite-ground time synchronization is available. The satellite-ground link (GSL) can be used in conjunction with the ISL if proper attention is paid to all corrections and the biases are fitted. We execute methods to synchronize the clocks of BDS-3 satellites to an accurate reference clock on the ground, by estimating relative clock offsets obtained via Ka-band GSL observations. We solve for the relative biases using the closure properties of the redundant biases and the Ka-band (Ka-mode) satellite-ground two-way data. We find the biases, relative to the GSL hardware delay, are relatively stable in the short term. This makes it feasible to estimate them as a constant every few hours, and the standard deviation of the hardware delay estimations within 24 h is slightly less than 0.7 ns. The frequency stability of Ka-mode estimated clock offset shows a negative short-term performance because of the dominant effect of the white phase noise in the relative clock offsets from the Ka-mode, but the long-term performance seems to be improved to a higher level. The time synchronization accuracy of Ka-mode is proven to be better than 0.3 ns (RMS), whereas the accuracy for the high-orbit satellite is slightly worse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The BDS-3 Ka-band GSL observations data are available from the corresponding author upon request, and the relative clock offsets obtained from MPOD-mode are available from GFZ products (https://cddis.nasa.gov/archive/gnss/products/mgex/).

References

  • Ananda MP, Berstein H, Bruce RW, Cunningham KE, Feess WA, Jorgensen PS, Menn M, Price CM (1984) Autonomous navigation of global positioning system satellites. AIAA guidance and control conference, Seattle, pp 321–327

  • Ananda MP, Berstein H, Cunningham KE, Feess WA, Stroud EG (1990) Global positioning system (GPS) autonomous navigation. IEEE position, location and navigation symposium, Las Vegas, pp 497–508

  • Bernstein H, Bowden AF, Gartside JH (1993) GPS user position accuracy with Block IIR autonomous navigation. In: Proc. ION GPS 1993, Institute of Navigation, Salt Lake City, pp 1389–1399

  • Cai H, Meng Y, Geng T, Xie X (2020) Initial results of precise orbit determination using satellite-ground and inter-satellite link observations for BDS-3 satellites. Geomat Inform Sci Wuhan Univ 45(10):1493–1500

    Google Scholar 

  • Cai H, Meng Y, Geng C, Gao W, Zhang T, Li G, Shao B, Xin J, Lu Y, Mao Y, Yuan H, Liu C, Hu X, Lou Y (2021) BDS-3 performance assessment: PNT, SBAS, PPP, SMC and SAR. Acta Geod Et Cartogr Sin 50(4):427–435

    Google Scholar 

  • Feng Y, Zhen H, Na X (2019) Autonomous navigation for GPS using inter-satellite ranging and relative direction measurements. Acta Astronaut 160(5):646–655

    Google Scholar 

  • Fernández FA (2011) Inter-satellite ranging and inter-satellite communication links for enhancing GNSS satellite broadcast navigation data. Adv Space Res 47(5):786–801

    Article  Google Scholar 

  • Fisher SC, Ghassemi K (1999) GPS IIF-the next generation. Proceedings of the IEEE, Seal Beach, pp 24–47

  • Hećimović Ž (2013) Relativistic effects on satellite navigation. Teh Vjesn 20(1):195–203

    Google Scholar 

  • Huang J, Su Y, Liu W, Wang F (2016) Optimization design of inter-satellite link (ISL) assignment parameters in GNSS based on genetic algorithm. Adv Space Res 60(12):2574–2580

    Article  Google Scholar 

  • Ignatovich EI, Schekutje AF (2008) Results of imitating tests of some versions of onboard algorithms for SC GLONASS Inter-satellite measurement processing. In: Proceedings of the 15th Saint Petersburg international conference on integrated navigation systems, Saint Petersburg, pp 348–355

  • Jin S, Feng GP, Gleason S (2011) Remote sensing using GNSS signals: current status and future directions. Adv Space Res 47(10):1645–1653

    Article  Google Scholar 

  • Kan H, Hu Z, Lv Y, Xie X, Zhou R, Zhao Q (2021) Performance evaluation of BeiDou-3 spaceborne atomic clock using different time synchronization systems. Geomat Inform Sci Wuhan Univ. https://doi.org/10.13203/j.whugis20210286

  • Kaula WM (1996) Theory of satellite geodesy. Blaisdell Publishing Company, Dover Publications, New York, p 45

    Google Scholar 

  • Kur T, Kalarus M (2021) Simulation of inter-satellite link schemes for use in precise orbit determination and clock estimation. Adv Space Res 68(12):4734–4752

    Article  Google Scholar 

  • Laurent P, Massonnet D, Cacciapuoti L, Salomon C (2015) The ACES/PHARAO space mission. C R Phys 16:540–552

    Article  Google Scholar 

  • Maine KP, Anderson P, Langer J (2003) Crosslinks for the next-generation GPS. In: IEEE aerospace conference proceedings, Big Sky, pp 1589–1596

  • Meng Y, Fan S, Yang Q, Song X (2015) Analysis of spacecraft orbit determination method using GNSS crosslink. Spacecr Eng 24(5):31–37

    Google Scholar 

  • Michalak G, Glaser S, Neumayer KH, König R (2021) Precise orbit and earth parameter determination supported by LEO satellites, inter-satellite links and synchronized clocks of a future GNSS. Adv Space Res 68:4753–4782

    Article  Google Scholar 

  • Pan J, Hu X, Zhou S, Tang C, Guo R, Zhu L, Tang G, Hu G (2018) Time synchronization of new-generation BDS satellites using inter-satellite link measurements. Adv Space Res 61(1):145–153

    Article  Google Scholar 

  • Rajan JA (2002) Highlights of GPS II-R autonomous navigation. In: Proceedings of the 58th annual meeting of the institute of navigation and CIGTF 21st guidance test symposium, New Mexico, pp 354–363

  • Ren X, Yang Y, Zhu J, Xu T (2017) Orbit determination of the next-generation beidou satellites with intersatellite link measurements and a priori orbit constraints. Adv Space Res 60(10):2155–2165

    Article  Google Scholar 

  • Ruan R, Jia X, Feng L, Zhu J, Wei Z (2020) Orbit determination and time synchronization for BDS-3 satellites with raw inter-satellite link ranging observations. Satell Navig 1(1):1

    Article  Google Scholar 

  • Sliarawi MS, Akos DM, Aloi DN (2007) GPS C/N0 estimation in the presence of interference and limited quantization levels. IEEE Trans Aerosp Electron Syst 43(1):227–238

    Article  Google Scholar 

  • Song X, Mao Y, Feng L, Jia X, Ji J (2017) The preliminary result and analysis for BD orbit determination with inter-satellite link data. Acta Geod Et Cartogr Sin 46(5):547–553

    Google Scholar 

  • Sun L, Wang Y, Huang W, Yang J, Zhou Y, Yang D (2018) Inter-satellite communication and ranging link assignment for navigation satellite systems. GPS Solut 22(2):38

    Article  Google Scholar 

  • Sun L, Gao Y, Huang W, Li P, Zhou Y, Yang J (2019) Autonomous time synchronization using beidou inter-satellite link ranging. In: 2019 IEEE international conference on signal, information and data processing (ICSIDP), Chongqing, pp 1–5

  • Sun L, Gao S, Yang J, Xiao F, Fang Y, Feng S (2021) Relativistic effect in the two-way time comparison between navigation satellites. In: China satellite navigation conference (CSNC 2021) proceedings, Nanchang, pp 95–104

  • Tang C, Hu X, Zhou S, Liu L, Pan J, Chen L, Guo R, Zhu L, Hu G, Li X, He F, Chang Z (2018) Initial results of centralized autonomous orbit determination of the new-generation BDS satellites with inter-satellite link measurements. J Geodesy 92(10):1–15

    Article  Google Scholar 

  • Wang X, Hu X, Jiang H, Zhao H (2017) The precise orbit determination technique of GNSS satellites. Science Press Publications, Beijin, p 176

    Google Scholar 

  • Wang W, Wang Y, Yu C, Xu F, Dou X (2021) Spaceborne atomic clock performance review of BDS-3 MEO satellites. Measurement 175(2):109075

    Article  Google Scholar 

  • Xia Y, Meng X, Yang Y, Pan S, Zhao Q, Gao W (2021) First results of BDS positioning for LBS applications in the UK. Satell Navig. https://doi.org/10.1186/s43020-021-00035-1

    Article  Google Scholar 

  • Yang D, Yang J, Li G, Zhou Y, Tang CP (2017) Globalization highlight: orbit determination using beidou inter-satellite ranging measurements. GPS Solut 21(3):1395–1404

    Article  Google Scholar 

  • Yang Y, Yang Y, Hu X, Tang C, Guo R, Zhou S, Xu J, Pan J, Su M (2021) BeiDou-3 broadcast clock estimation by integration of observations of regional tracking stations and inter-satellite links. GPS Solut 25(2):1–12

    Article  Google Scholar 

  • Yu F (2008) Research on micro-satellite attitude and orbit autonomous determination, Nanjing University of Aeronautics and Astronautics, Nanjin, p 25

  • Zhou S, Hu X, Liu L, He F, Tang C, Pan J (2019) Status of satellite orbit determination and time synchronization technology for global navigation satellites system. Acta Astronom Sin 60(4):57–66

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Nature Science Foundation of China (Grant NO.11873009), CAS ”Light of West China ” Program (E016YR1R) and Shaanxi Provincial Talents Plan (E039SB1K). The authors thanks to China Xi’an Satellite Control Center for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Bai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Bai, Y., Zhang, J. et al. Methods and assessments of two-way time synchronization based on BDS-3 Ka-band satellite-ground link observations. GPS Solut 27, 135 (2023). https://doi.org/10.1007/s10291-023-01459-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-023-01459-9

Keywords

Navigation