Skip to main content

Advertisement

Log in

GNSS Site unmodeled error prediction based on machine learning

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

A number of studies have attempted to reduce the effect of observation errors on Global Navigation Satellite Systems positioning through empirical error models. However, due to the complex spatiotemporal characteristics of observation errors, the effects of these errors cannot be eliminated, resulting in the unmodeled error in the positioning results. Although many studies have been carried out on unmodeled error mitigation, most of which only focus on positioning model optimization and fail to make use of historical observation data. We explore the relationship between unmodeled error and observation features and develop a new data-driven approach based on machine learning. Historical observations of a specific station are used to predict the unmodeled error of a positioning model. Time–frequency analysis is used to evaluate the prediction results. The feasibility of applying the method to the precise point positioning (PPP) kinematic positioning is verified by using IGS station data. It is clear from the findings that the data-driven model can effectively predict the unmodeled errors in GNSS positioning, especially in low-frequency components. In addition, the influencing factors of the method are explored in detail and the relevant settings are recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce the findings of this study are available from the International GNSS Service.

References

  • Abadi M et al (2016) Tensorflow: a system for large-scale machine learning. In: 12th symposium on operating systems design and implementation, Savannah, USA, 2–4 Nov 2016, pp 265–283

  • Addison PS (2017) The illustrated wavelet transform handbook: introductory theory and applications in science, engineering, medicine, and finance. CRC Press

    Book  Google Scholar 

  • Bevis M, Brown A (2014) Trajectory models and reference frames for crustal motion geodesy. J Geod 88:283–311. https://doi.org/10.1007/s00190-013-0685-5

    Article  Google Scholar 

  • Bevis M, Bedford J, Caccamise DJ II (2020) The art and science of trajectory modelling. In: Montillet JP, Bos M (eds) Geodetic time series analysis in earth sciences. Springer Geophysics. Springer, Cham. https://doi.org/10.1007/978-3-030-21718-1_1

    Chapter  Google Scholar 

  • Bos MS, Montillet JP, Williams SDP, Fernandes RMS (2020) Introduction to geodetic time series analysis. In: Montillet JP, Bos M (eds) Geodetic time series analysis in earth sciences. Springer Geophysics. Springer, Cham. https://doi.org/10.1007/978-3-030-21718-1_2

    Chapter  Google Scholar 

  • Buduma N, Locascio N (2017) Fundamentals of deep learning: designing next-generation machine intelligence algorithms. O’Reilly Media, Inc.

    Google Scholar 

  • Chen L, Ali-LöyttyPiche´ SR, Wu L (2012) Mobile tracking in mixed line-of-sight/non-line-of-sight conditions: algorithm and theoretical lower bound. Wirel Pers Commun 65(4):753–771

    Article  Google Scholar 

  • Chen L, Piché R, Kuusniemi H, Chen R (2014) Adaptive mobile tracking in unknown non-line-of-sight conditions with application to digital TV networks EURASIP. J Adv Signal Process 1:22

    Article  Google Scholar 

  • Chen L et al (2017) Robustness, security and privacy in location-based services for future IoT: a survey. IEEE Access 5:8956–8977

    Article  Google Scholar 

  • Choi K, Bilich A, Larson KM, Axelrad P (2004) Modified sidereal filtering: implications for high-rate GPS positioning. Geophys Res Lett. https://doi.org/10.1029/2004GL021621

    Article  Google Scholar 

  • Dong D, Fang P, Bock Y, Webb F, Prawirodirdjo L, Kedar S, Jamason P (2006) Spatiotemporal filtering using principal component analysis and Karhunen–Loeve expansion approaches for regional GPS network analysis. J Geophys Res. https://doi.org/10.1029/2005JB003806C

    Article  Google Scholar 

  • Dong D, Wang M, Chen W, Zeng Z, Song L, Zhang Q, Cai M, Cheng Y, Lv J (2016) Mitigation of multipath effect in GNSS short baseline positioning by the multipath hemispherical map. J Geodesy 90(3):255–262

    Article  Google Scholar 

  • Engels O (2020) Stochastic modelling of geophysical signal constituents within a Kalman filter framework. In: Montillet JP, Bos M (eds) Geodetic time series analysis in earth sciences. Springer Geophysics. Springer, Cham. https://doi.org/10.1007/978-3-030-21718-1_8

    Chapter  Google Scholar 

  • Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge

    Google Scholar 

  • Gruszczynska M, Rosat S, Klos A et al (2018) Multichannel singular spectrum analysis in the estimates of common environmental effects affecting GPS observations. Pure Appl Geophys 175:1805–1822. https://doi.org/10.1007/s00024-018-1814-0

    Article  Google Scholar 

  • Gulli A, Pal S (2017) Deep learning with Keras. Packt Publishing Ltd, Birmingham

    Google Scholar 

  • Hoque M, Jakowski N (2008) Mitigation of higher order ionospheric effects on GNSS users in Europe. GPS Solut 12(2):87–97

    Article  Google Scholar 

  • Hsu L-T (2017) GNSS multipath detection using a machine learning approach. In: 2017 IEEE 20th international conference on intelligent transportation systems (ITSC), Yokohama, Japan, 16–19 Aug 2017. IEEE

  • Kingma DP, Ba JL (2015) Adam: a method for stochastic optimization. In: ICLR2015: international conference on learning representations 2015, Venue San Diego, CA, 7–9 May 2015

  • Kirby M, Sirovich L (1990) Application of the Karhunen-Loeve procedure for the characterization of human faces. IEEE Trans Pattern Anal Mach Intell 12(1):103–108

    Article  Google Scholar 

  • Kouba J, Héroux P (2001) Precise point positioning using IGS orbit and clock products. GPS Solut 5(2):12–28

    Article  Google Scholar 

  • Langbein J (2017) Improved efficiency of maximum likelihood analysis of time series with temporally correlated errors. J Geod 91:985–994. https://doi.org/10.1007/s00190-017-1002-5

    Article  Google Scholar 

  • Lau L, Cross P (2006) A new signal-to-noise-ratio based stochastic model for GNSS high-precision carrier phase data processing algorithms in the presence of multipath errors. In: Proceedings of ION GNSS 2006, Institute of navigation, Fort worth, TX, 26–29 Sep 2006, pp 276–285

  • Lau L, Cross P (2007) Development and testing of a new ray-tracing approach to GNSS carrier-phase multipath modeling. J Geodesy 81(11):713–732

    Article  Google Scholar 

  • LeCun Y, Bengio Y (1998) Convolutional networks for images, speech, and time series. In: Arbib MA (ed) The handbook of brain theory and neural networks. MIT Press, pp 255–258

    Google Scholar 

  • Li Y, Xu C, Yi L (2017) Denoising effect of multiscale multiway analysis on high-rate GPS observations. GPS Solut 21(1):31–41

    Article  Google Scholar 

  • Li B, Zhang Z, Shen Y, Yang L (2018a) A procedure for the significance testing of unmodeled errors in GNSS observations. J Geodesy 92(10):1171–1186

    Article  Google Scholar 

  • Li Y, Xu C, Yi L, Fang R (2018b) A data-driven approach for denoising GNSS position time series. J Geodesy 92(8):905–922

    Article  Google Scholar 

  • Malys S, Jensen PA (1990) Geodetic point positioning with GPS carrier beat phase data from the CASA UNO Experiment. Geophys Res Lett 17(5):651–654

    Article  Google Scholar 

  • Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th international conference on machine learning, Haifa, Israel, 21–24 June 2010, pp 807–814

  • Olivares-Pulido G, Teferle FN, Hunegnaw A (2020) Markov chain monte carlo and the application to geodetic time series analysis. In: Montillet JP, Bos M (eds) Geodetic time series analysis in earth sciences. Springer Geophysics. Springer, Cham. https://doi.org/10.1007/978-3-030-21718-1_3

    Chapter  Google Scholar 

  • Prechelt L (1998) Early stopping-but when? In: Montavon G, Orr GB, Müller KR (eds) Neural Networks: tricks of the trade. Lecture notes in computer science, vol 7700. Springer, Berlin, Heidelberg, pp 55–69

    Chapter  Google Scholar 

  • Quan Y, Lau L, Roberts GW, Meng X, Zhang C (2018) Convolutional neural network based multipath detection method for static and kinematic GPS high precision positioning. Remote Sens 10(12):2052

    Article  Google Scholar 

  • Ragheb AE, Clarke PJ, Edwards SJ (2007) GPS sidereal filtering: coordinate and carrier-phase-level strategies. J Geodesy 81(5):325–335

    Article  Google Scholar 

  • Ruch DK, Van Fleet PJ (2009) Wavelet theory: an elementary approach with applications. John Wiley & Sons

    Book  Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1988) Learning representations by back-propagating errors. Nature 323(6088):533–536

    Article  Google Scholar 

  • Shen N, Chen L, Wang L, Lu X, Tao T, Yan J, Chen R (2020) Site-specific real-time GPS multipath mitigation based on coordinate time series window matching. GPS Solut 24(3):82

    Article  Google Scholar 

  • Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958

    Google Scholar 

  • Takasu T (2011) Rtklib: An open source program package for GNSS positioning. Tech Rep, 2013 Software and documentation

  • Teunissen PJG, Amiri-Simkooei AR (2008) Least-squares variance component estimation. J Geod 82:65–82. https://doi.org/10.1007/s00190-007-0157-x

    Article  Google Scholar 

  • Wang L, Feng Y, Wang C (2013) Real-time assessment of GNSS observation noise with single receivers. J Glob Position Sys 12(1):73–82

    Google Scholar 

  • Wdowinski S, Bock Y, Zhang J, Fang P, Genrich J (1997) Southern California permanent GPS geodetic array: spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 landers earthquake. J Geophys Res 102(8):18057–18070

    Article  Google Scholar 

  • Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2(1–3):37–52

    Article  Google Scholar 

  • Zhang Z, Li B (2020) Unmodeled error mitigation for single-frequency multi-GNSS precise positioning based on multi-epoch partial parameterization. Meas Sci Technol 31(2):25008

    Article  Google Scholar 

  • Zhang Z, Li B, Shen Y (2017) Comparison and analysis of unmodelled errors in GPS and BeiDou signals. Geod Geodyn 8(1):41–48

    Article  Google Scholar 

  • Zhang Z, Li B, Shen Y, Gao Y, Wang M (2018) Site-specific unmodeled error mitigation for GNSS positioning in urban environments using a real-time adaptive weighting model. Remote Sens 10(7):1157

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Jiangsu Province under Grant number BK20220367, University the Open Research Fund Program of LIESMARS under grant number 22P04, the National Natural Science Foundation of China under Grant number 42171417, 42271420, the Key Research and Development Program of Hubei Province under Grant number 2021BAA166, the Special Fund of Hubei Luojia Laboratory, the Special Research Fund of LIESMARS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 34815 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, N., Chen, L., Wang, L. et al. GNSS Site unmodeled error prediction based on machine learning. GPS Solut 27, 77 (2023). https://doi.org/10.1007/s10291-023-01411-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-023-01411-x

Keywords

Navigation