Skip to main content

Advertisement

Log in

Rapid displacement determination with a stand-alone multi-GNSS receiver: GPS, Beidou, GLONASS, and Galileo

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Global Navigation Satellite System (GNSS) is an effective tool to retrieve displacement with high precision. Relative positioning and precise point positioning (PPP) are two basic techniques. We present a multi-GNSS dynamic PPP model considering the parameters of velocity and acceleration to determine high-precision displacement rapidly. The performance evaluations of dynamic PPP are conducted in terms of convergence time and positioning repeatability. The mean convergence time of GPS-only, Beidou-only, GPS + Beidou, GPS + GLONASS, GPS + Galileo, and quad-constellation dynamic PPP are 49.4, 104.5, 45.3, 39.9, 47.3, and 35.1 s, respectively. The Beidou-only dynamic PPP has poorer positioning repeatability than the GPS-only solution and the integration of multi-GNSS will enhance the positioning repeatability. The usability of multi-GNSS dynamic PPP for kinematic application is demonstrated by a vehicle-borne kinematic experiment and seismic waves capture data at station LASA during the 2015 Mw 7.8 Nepal earthquake. The dynamic PPP for the kinematic test will be improved in terms of positioning precision with more GNSS constellations and does not suffer the long convergence time compared with kinematic solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bilham R (2004) Earthquakes in India and the Himalaya: tectonics, geodesy and history. Ann Geophys 47(2–3):839–858

    Google Scholar 

  • Boehm J, Schuh H (2004) Vienna mapping functions in VLBI analyses. Geophys Res Lett 31(1):195–196

    Article  Google Scholar 

  • Boore DM (2001) Effect of baseline corrections on displacements and response spectra for several recordings of the 1999 Chi–Chi, Taiwan, earthquake. Bullseissocam 91(5):1199–1211

    Google Scholar 

  • Branzanti M, Colosimo G, Crespi M, Mazzoni A (2013) GPS near-real-time coseismic displacements for the great Tohoku-oki earthquake. IEEE Geosci Remote Sens Lett 10(2):372–376

    Article  Google Scholar 

  • Colosimo G, Crespi M, Mazzoni A (2011) Real-time GPS seismology with a stand-alone receiver: a preliminary feasibility demonstration. J Geophys Res Solid Earth. https://doi.org/10.1029/2010JB007941

    Article  Google Scholar 

  • Davis JL, Herring TA, Shapiro II, Rogers AEE, Elgered G (1985) Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio Sci 20(6):1593–1607

    Article  Google Scholar 

  • Fan W, Shearer PM (2015) Detailed rupture imaging of the 25 April 2015 Nepal earthquake using teleseismic P waves. Geophy Res Lett 42(14):5744–5752

    Article  Google Scholar 

  • Ge M, Gendt G, Rothacher M, Shi C, Liu J (2008) Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. J Geod 82(7):389–399

    Article  Google Scholar 

  • Geng T, Xie X, Fang R, Su X, Zhao Q, Liu G et al (2016) Real-time capture of seismic waves using high-rate multi-GNSS observations: application to the 2015 Mw 7.8 Nepal earthquake. Geophy Res Lett. https://doi.org/10.1002/2015GL067044

    Article  Google Scholar 

  • Guo F, Zhang X (2014) Real-time clock jump compensation for precise point positioning. GPS Solut 18(1):41–50

    Article  Google Scholar 

  • Guo H, He H, Li J, Wang A (2011) Estimation and mitigation of the main errors for centimetre-level compass RTK solutions over medium-long baselines. J Navig 64(S1):S113–S126

    Article  Google Scholar 

  • Guo F, Zhang X, Wang J (2015) Timing group delay and differential code bias corrections for Beidou positioning. J Geod 89(5):427–445

    Article  Google Scholar 

  • Hopfield HS (1969) Two-quartic tropospheric refractivity profile for correcting satellite data. J Geophys Res 74(18):4487–4499

    Article  Google Scholar 

  • Jin S, Occhipinti G, Jin R (2015) GNSS ionospheric seismology: recent observation evidence and characteristics. Earth Sci Rev 147:54–64

    Article  Google Scholar 

  • Jin S, Qian X, Kutoglu H (2016) Snow depth variations estimated from GPS-reflectometry: a case study in Alaska from L2P SNR data. Remote Sens 8(1):63. https://doi.org/10.3390/rs8010063

    Article  Google Scholar 

  • Kalman RE (1960) A new approach to linear filtering and prediction problems. J Basic Eng Trans 82:35–45

    Article  Google Scholar 

  • Kouba J (2009) A guide to using international GNSS service (IGS) products. http://igscb.jpl.nasa.gov/igscb/resource/pubs/UsingIGSProductsVer21.pdf

  • Kouba J, Heroux P (2001) Precise point positioning using IGS orbit and clock products. GPS Solut 5(2):12–28

    Article  Google Scholar 

  • Lagler K, Schindelegger M, Böhm J, Krásná H, Nilsson T (2013) GPT2: empirical slant delay model for radio space geodetic techniques. Geophy Res Lett 40(6):1069–1073

    Article  Google Scholar 

  • Lambiel C, Delaloye R (2004) Contribution of real-time kinematic GPS in the study of creeping mountain permafrost: examples from the Western Swiss Alps. Permafrost Periglac Process 15(3):229–241

    Article  Google Scholar 

  • Leick A, Rapoport L, Tatarnikov D (2015) GPS satellite surveying, 4th edn. Wiley, Hoboken

    Google Scholar 

  • Li X, Ge M, Zhang Y, Wang R, Xu P, Wickert J, Schuh H (2013) New approach for earthquake/tsunami monitoring using dense GPS networks. Sci Rep 3:2682

    Article  Google Scholar 

  • Li X, Zhang X, Ren X, Fritsche M, Wickert J, Schuh H (2015) Precise positioning with current multi-constellation global navigation satellite systems: GPS, GLONASS, Galileo and Beidou. Sci Rep 5:8328

    Article  Google Scholar 

  • Li X, Chen X, Ge M, Schuh H (2018) Improving multi-GNSS ultra-rapid orbit determination for real-time precise point positioning. J Geod 3:1–20

    Google Scholar 

  • Montenbruck O, Steigenberger P, Khachikyan R, Weber G, Langley RB, Mervart L et al (2014) IGS-MGEX: preparing the ground for multi-constellation GNSS science. Espace 9(1):42–49

    Google Scholar 

  • Paul W, Nick W, Sally B (2009) GPS jamming and the impact on maritime navigation. J Navig 62(2):173–187

    Article  Google Scholar 

  • Petit G, Luzum B (eds) (2010) IERS Conventions (2010), IERS Technical Note 36. Verlagdes Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, Germany

  • Rizos C, Montenbruck O, Weber R, Weber G, Neilan R, Hugentobler U (2013) The IGS MGEX experiment as a milestone for a comprehensive multi-GNSS service. In: ION Pacific PNT conference, vol 8900. DLR, pp 289–295

  • Su K, Jin S (2018) Improvement of multi-GNSS precise point positioning performances with real meteorological data. J Navig 71(6):1363–1380. https://doi.org/10.1017/S0373463318000462

    Article  Google Scholar 

  • Su K, Jin S, Hoque MM (2019) Evaluation of ionospheric delay effects on multi-GNSS positioning performance. Remote Sens 11(2):171. https://doi.org/10.3390/rs11020171

    Article  Google Scholar 

  • Tegedor J, Øvstedal O, Vigen E (2014) Precise orbit determination and point positioning using GPS, GLONASS, Galileo and Beidou. J Geod Sci. https://doi.org/10.2478/jogs-2014-0008

    Article  Google Scholar 

  • Tu R (2013) Fast determination of displacement by PPP velocity estimation. Geophys J Int 196(3):1397–1401. https://doi.org/10.1093/gji/ggt480

    Article  Google Scholar 

  • Wang K, Fialko Y (2015) Slip model of the 2015 Mw 7.8 Gorkha (Nepal) earthquake from inversions of ALOS-2 and GPS data. Geophys Res Lett 42(18):7452–7458

    Article  Google Scholar 

  • Wei E, Jin S, Wan L, Liu W, Yang Y, Hu Z (2015) High frequency variations of earth rotation parameters from GPS and GLONASS observations. Sensors 15(2):2944–2963

    Article  Google Scholar 

  • Wendel J, Meister O, Monikes R, Trommer GF (2006) Time-differenced carrier phase measurements for tightly coupled GPS/INS integration. In: Proceedings of IEEE/ION PLANS 2006, San Diego, CA, April 2006, pp 54–60

  • Wu JT, Wu SC, Hajj GA, Bertiger WI, Lichten SM (1992) Effects of antenna orientation on GPS carrier phase. Astrodynamics 18:1647–1660) (Astrodynamics 1991)

    Google Scholar 

  • Yang Y, He H, Xu G (2001) Adaptively robust filtering for kinematic geodetic positioning. J Geod 75(2–3):109–116

    Article  Google Scholar 

  • Yang Y, Li J, Wang A, Xu J, He H, Guo H, Dai X (2014) Preliminary assessment of the navigation and positioning performance of BeiDou regional navigation satellite system. Sci China Earth Sci 57(1):144–152

    Article  Google Scholar 

  • Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3):5005–5017. https://doi.org/10.1029/96JB03860

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (NSFC) Project (Grant no. 41761134092), Jiangsu Province Distinguished Professor Project (Grant no. R2018T20) and Startup Foundation for Introducing Talent of NUIST (Grant no. 2243141801036). We thanked IGS for providing the GNSS data. The LASA station GNSS data are obtained from the BETS networks in Wuhan University and the strong motion data at LASA are obtained from the IRIS Data Management Center. The authors thank the anonymous reviewers, for their constructive and detailed comments that significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuanggen Jin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, K., Jin, S. & Ge, Y. Rapid displacement determination with a stand-alone multi-GNSS receiver: GPS, Beidou, GLONASS, and Galileo. GPS Solut 23, 54 (2019). https://doi.org/10.1007/s10291-019-0840-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-019-0840-4

Keywords

Navigation