Skip to main content

Advertisement

Log in

Strain rates in the Alpine Mediterranean region: insights from advanced techniques of data processing

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Strain rates and Euler poles for various subregions of the Alpine Mediterranean region were calculated by using global navigation satellite system data from permanent stations. The main scope of the study is to compare and analyze strain rate maps that were calculated using different approaches. This area presents a complex tectonic setting due to the interaction of the Eurasian and Nubian plates. The horizontal velocity gradient tensor was computed starting from a new set of site velocities determined by using continuous long-series geodetic data, state-of-the-art antenna calibrations and recomputed precise orbits. Geodesy provides velocities for a sparsely distributed, discrete number of sites, while deformation has a spatially continuous distribution. For this reason, the interpolation method and the geometric approach to the problem play a fundamental role in the estimation of the strain rate field. In the present study, principal deformation axes and principal angle were estimated by applying two different approaches: the Delaunay triangulation and a grid solution. Both methods produce results with broad coherence, providing new information about the deformation throughout the entire study area. Moreover, an evaluation and analysis of Euler poles related to the different velocity patterns, give complementary information to reconstruct the active deformation in the Mediterranean area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altamimi Z, Métivier L, Collileux J (2012) ITRF2008 plate motion model. J Geophys Res 117:B07402. doi:10.1029/2011JB008930

    Article  Google Scholar 

  • Amante C, Eakins BW (2009) ETOPO1, 1 arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24, p 19. www.ngdc.noaa.gov/mgg/global/global.html

  • Bartier P, Keller P (1996) Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW). Comput Geosci. doi:10.1016/0098-3004(96)00021-0

    Google Scholar 

  • Böhm J, Heinkelmann R, Schuh H (2007) A global model of pressure and temperature for geodetic applications. J Geod 81(10):679–683. doi:10.1007/s00190-007-0135-3

    Article  Google Scholar 

  • Cannavò F, Palano M (2015) Defining geodetic reference frame using Matlab®: PlatEMotion 2.0. Pure appl Geophys. doi:10.1007/s00024-015-1112-z

    Google Scholar 

  • Caporali A, Martin S, Massironi M (2003) Average strain rate in the Italian crust inferred from a permanent GPS network—II. Strain rate versus seismicity and structural geology. Geophys J Int 155:254–268. doi:10.1046/j.1365-246X.2003.02035.x

    Article  Google Scholar 

  • Cenni N, Mantovani E, Baldi P, Viti M (2012) Present kinematics of Central and Northern Italy from continuous GPS measurements. J Geodyn 58:62–72. doi:10.1016/j.jog.2012.02.004

    Article  Google Scholar 

  • Cuffaro M, Riguzzi F, Scrocca D, Antoniioli F, Carminati E, Livani M, Doglioni C (2010) On the geodynamics of the northern Adriatic plate. Rend Fis Acc Lincei 21(Suppl 1):S253–S279. doi:10.1007/s12210-010-0098-9

    Article  Google Scholar 

  • Dach R, Hugentobler U, Fridez P, Meindl M (2007) The Bernese GPS software version 5.0. Astronomical Institute of University of Bern (AIUB), Bern

    Google Scholar 

  • D’Agostino N, Avallone A, Cheloni D, D’Anastasio E, Mantenuto S, Selvaggi G (2008) Active tectonics of the Adriatic region from GPS and earthquake slip vectors. J Geophys Res. doi:10.1029/2008JB005860

    Google Scholar 

  • Dermanis A, Grafarend EW (1993) The finite element approach to geodetic computation of two- and three-dimensional deformation parameters: a study of frame invariance and parameter estimability. Cartography–geodesy, Maracaibo/Venezuela. Institute de Astronomia y Geodesia, Madrid

    Google Scholar 

  • Dermanis A, Liveratos E (1983) Applications of deformation analysis in geodesy and geodynamics. Rev Geophys Space Phys 21(1):41–50. doi:10.1029/RG021i001p00041

    Article  Google Scholar 

  • Devoti R, Esposito A, Pietrantonio G, Pisani AR, Riguzzi F (2011) Evidence of large scale deformation patterns from GPS data in the Italian subduction boundary. EPSL 311:230–241. doi:10.1016/j.epsl.2011.09.034

    Article  Google Scholar 

  • Farolfi G, Del Ventisette C (2015) Contemporary crustal velocity field in Alpine Mediterranean area of Italy from new geodetic data, GPS Solut. ISSN Print 1080-537. doi:10.1007/s10291-015-0481-1

  • Kenyeres A (2014) EUREF densification of the IGS08. ftp://epncb.oma.be/epncb/station/coord/EPN/EPN_A_IGb08

  • Noquet J (2012) Present-day kinematics of the Mediterranean: a comprehensive overview of GPS results. Tectonophysics. doi:10.1016/j.tecto.2012.03.037

    Google Scholar 

  • Sani F, Vannucci G, Boccaletti M, Bonini M, Corti G, Serpelloni E (2016) Insights into the fragmentation of the Adria Plate. J Geodyn. doi:10.1016/j.jog.2016.09.004

    Google Scholar 

  • Savage JC, Gan W, Svarc JL (2001) Strain accumulation and rotation in the Eastern California Shear Zone. J Geophys Res 106(B10):21995–22007. doi:10.1029/2000JB000127

    Article  Google Scholar 

  • Serpelloni E, Anzidei M, Baldi P, Casula G, Galvani A (2005) Crustal velocity and strain rate fields in Italy and surroundings regions: new results from the analysis of permanent and non permanent GPS networks. Geophys J Int 161:861–880. doi:10.1111/j.1365-246X.2005.02618.x

    Article  Google Scholar 

  • Shen Z-K, Jackson DD (2000) Optimal estimation of geodetic strain rate from GPS data. EOS Trans AGU 81:406

    Google Scholar 

  • Shen Z-K, Jackson DD, Ge BX (1996) Crustal deformation across and beyond the Los Angeles basin from geodetic measurements. J Geophys Res 101:27957–27980

    Article  Google Scholar 

  • Shepard D (1968) A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 ACM national conference. doi:10.1145/800186.810616

  • Teza G, Pesci A, Galgaro A (2008) Grid_strain and grid_strain3: software packages for strain field computation in 2D and 3D environments. Comput Geosci 34(9):1142–1153. doi:10.1016/j.cageo.2007.07.006

    Article  Google Scholar 

  • Williams SDP (2008) CATS: GPS coordinate time series analysis software. GPS Solut 12(2):147–153. doi:10.1007/s10291-007-0086-4

    Article  Google Scholar 

  • Weber J, Vrabec M, Pavlovčič-Prešeren P, Dixon T, Jiang Y, Stopar B (2010) GPS-derived motion of the Adriatic microplate from Istria Peninsula and Po Plain sites, and geodynamic implications. Tectonophysics 483(3–4):214–222

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Istituto Geografico Militare (IGM) and Department of Earth Sciences, University of Firenze (Professor N. Casagli). We thank colleagues who run and maintain the various regional and global networks (EPN, ASI, INGV and others) and publicly share the continuous GNSS data used in this study. This study benefited from careful thorough comments by an anonymous reviewer. Geoprocessing and figures were prepared using the open source Quantum GIS, PostGIS, Saga GIS and using shaded-relief map ETOPO1 Global Relief Model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregorio Farolfi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farolfi, G., Del Ventisette, C. Strain rates in the Alpine Mediterranean region: insights from advanced techniques of data processing. GPS Solut 21, 1027–1036 (2017). https://doi.org/10.1007/s10291-016-0588-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-016-0588-z

Keywords

Navigation