Skip to main content
Log in

Improvement in PWV estimation from GPS due to the absolute calibration of antenna phase center variations

  • Original article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Climatology of column-integrated atmospheric water vapor over Spain has been carried out by means of three techniques: soundings, sun photometers and GPS receivers. Comparing data from stations equipped with more than one of these instruments, we found that a large discontinuity occurred on November 6, 2006, in the differences between the data series from GPS receivers and those from the other two techniques. Prior to that date, the GPS data indicate a wet bias of 2–3 mm for all stations when compared with sounding or photometer data, whereas after that date this bias practically reduces to zero. The root mean square error also decreases about half of its value. On November 6, 2006, the International GNSS Service adopted an absolute calibration model for the antennas of the GPS satellites and receivers instead of the relative one. This change is expected to be an improvement, increasing the accuracy of station position determination and consequently benefiting post-processing products such as zenith total delay from which the atmospheric water vapor content is calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bevis M, Businger S, Herring TA, Rocken C, Anthes RA, Ware RH (1992) GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system. J Geophys R 97:15787–15801

    Google Scholar 

  • Bevis M, Businger S, Chiswell S, Herring TA, Anthes RA, Rocken C, Ware RH (1994) GPS meteorology: mapping zenith wet delays onto precipitable water. J App Meteorol 33:379–386

    Article  Google Scholar 

  • Bokoye AI, Royer A, O’Neill NT, Cliché P, McArthur LJB, Teillet PM, Fedosejevs G, Thériault JM (2003) Multisensor analysis of integrated atmospheric water vapor over Canada and Alaska. J Geophys Res 108(D15):4480. doi:10.1029/2002JD002721

    Google Scholar 

  • Boyoke AI, Royer A, Cliche P, O’Neill N (2006) Calibration of sun radiometer-based atmospheric water vapor retrievals using GPS meteorology. J Atmos Oceanic Technol 24:964–979

    Article  Google Scholar 

  • Bruegge CJ, Conel JE, Green RO, Margolis JS, Holm RG, Toon G (1992) Water vapor column abundance retrievals during FIFE. J Geophys Res 97(D17):18759–18768

    Google Scholar 

  • Bruyninx C, Brockmann E, Schaer S (2006) How to tie the EPN to the ITRF2005. Proceedings of the EUREF TWG Meeting, 6–7 Nov 2006, Frankfurt

  • Byun SH, Bar-Server YE (2009) A new type of troposphere zenith path delay product of the international GNSS service. J Geod 83(2009):367–373. doi: 10.1007/s00190-008-0288-8

    Google Scholar 

  • Cachorro VE, Utrillas P, Vergaz R, Duran P, de Frutos AM, Martinez-Lozano JA (1998) Determination of the atmospheric-water-vapor content in the 940-nm absorption band by use of moderate spectral-resolution measurements of direct solar irradiance. Appl Opt 37(21):4678–4689

    Article  Google Scholar 

  • De Haan S (2006) National/regional operational procedures of GPS water vapor networks and agreed international procedures. WMO—World Meteorological Organization. Instruments and Observing Methods, Report No. 92

  • Elliott WP, Gaffen DJ (1991) On the utility of radiosonde humidity archives for climate studies. Bull Amer Meteor Soc 72:1507–1520

    Article  Google Scholar 

  • Fotiou A, Pikridas C, Chatzinikos M (2008) GPS antenna: from relative to absolute. Coordinates vol IV, issue 3, pp. 28–30, March 2008

  • Guerova G (2003) Derivation of integrated water vapor (IWV) from the ground—based GPS estimates of Zenith Total Delay (ZTD). Research Report No 2003-08, Institute of Applied Physics, University of Berne, Switzerland

  • Halthore NR, Thomas FE, Holben BN, Markham BL (1997) Sun photometric measurements of atmospheric water vapor column abundance in the 940-nm band. J Geophys Res 102(D4):4343–4352

    Google Scholar 

  • Herring T, Davis JL, Shapiro II (1990) Geodesy by radio interferometry: the application of Kalman filtering to the analysis of very long baseline interferometry data. J Geophys Res 95:12561–12581

    Google Scholar 

  • IGSMail-5438 (2006) IGS switch to absolute antenna model and ITRF2005. IGS International GNSS Service

  • Ingold T, Schmid B, Mätzler C, Demoulin P, Kämpfer N (2000) Modeled and empirical approaches for retrieving columnar water vapor from solar transmittances measurements in 0.72, 0.82 and 0.94 um absorption bands. J Geophys Res 105(D19):24327–24344

    Article  Google Scholar 

  • Kruse L, Sierk B, Springer T, Cocard M (1999) GPSMeteorology: impact of predicted orbits on precipitable water estimates. Geophys Res Let 24(14):2045–2048

    Article  Google Scholar 

  • Miloshevich LM, Vömel H, Whiteman DN, Lesht BM, Schmidlin FJ, Russo F (2006) Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation. J Geophys Res 111:D09S10. doi:10.1029/2005JD006083

  • Ohtani R, Naito I (2000) Comparisons of GPS-derived precipitable water vapors with radiosonde observations in Japan. J Geophys Res 105(D22):26917–26929

    Google Scholar 

  • Reagan JA, Thome K, Herman B, Gall R (1987) Water vapor measurements in the 0.94 micron absorption band: calibration, measurements and data applications. In: Proceeding of IGARSS ‘87 Symposium, pp 63–67. IEEE Pres, Piscataway N.J

  • Richner H, Phillips PD (1982) The radiosonde intercomparison SONDEX Spring 1981, Payerne. Pure Appl Geophys 120:852–1198

    Article  Google Scholar 

  • Rothacher M, Schaer S, Mervart L, Beutler G (1995) Determination of antenna phase center variations using GPS data. In: Gendt G, Dick G (eds) Special topics and new directions, proceedings of the 1955 IGS work-shop, Potsdam, 15–17 May, pp 205–220

  • Schmid B, Thome KJ, Demoulin P, Peter R, Mätzler C, Sekler J (1996) Comparison of modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.94-μm region. J Geophys Res 101(D5):9345–9358

    Article  Google Scholar 

  • Schmid R, Mader G, Herring T (2004) From relative to absolute antenna phase center corrections. In: Proceedings of the IGS workshop and symposium 2004: celebrating a decade of the international GPS service IGS. Berne, Switzerland, 1–5 March 2004

  • Schmid R, Rothacher M, Thailer D, Steigenberger P (2005) Absolute phase center corrections of satellite and receiver antennas. Impact on global GPS solutions and estimation of azimuthal phase center variations of the satellite antenna. GPS Solutions, Vol. 9, Nr 4, pp 283–293. doi: 10.1007/s10291-005-0134-x

  • Schmid R, Steigenberger P, Rothacher M, Gendt G, Ge M, Tesmer V (2006) Absolute antenna phase center corrections and their impact on GPS results. In: Proceeding of the 2006 UNAVCO Science Workshop, 14–16 March, Denver, Colorado, USA

  • Schneider M, Romero PM, Hase F, Blumenstock T, Cuevas E, Ramos R (2009) Quality assessment of Izaña’s upper-air water vapor measurement techniques: FTIR, Cimel, MFRSR, GPS, and Vaisala RS92. Atmos Meas Tech Discuss 2:1625–1662

  • Smirnov A, Holben BN, Lyapustin A, Slutker I, Eck TF (2004) AERONET processing algorithm refinement. In: Proceeding “AERONET Workshop 2004”. El Arenosillo, Spain

  • Tralli DM, Dixon TH, Stephens SA (1988) Effect of wet tropospheric path delays on estimation of geodetic baselines in the Gulf of California using the global positioning system. J Geophys Res 93:6545–6557

    Google Scholar 

  • Wübbena G, Schmitz M, Menge F, Boder V, Seeber G (2000) Automated absolute field calibration of GPS antennas in real-time. In: Proceedings of the 13th international technical meeting of the satellite division of the institute of navigation, ION GPS-2000, Salt Lake City, Utah, USA, 19–22 Sep, pp 2512–2522

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Ortiz de Galisteo.

Appendix

Appendix

Definitions of statistics

$$ {\text{BIAS}} = {\frac{{\sum\nolimits_{i = 1}^{N} {{\text{PWV}}_{i}^{{({\text{GPS}})}} - {\text{PWV}}_{i}^{{({\text{Sound}}/{\text{Photo}})}} } }}{{N_{\text{data}} }}} $$
$$ {\text{RelativeBIAS}} = {\frac{{\sum\nolimits_{i = 1}^{N} {2 \times {\frac{{{\text{PWV}}_{i}^{{({\text{GPS}})}} - {\text{PWV}}_{i}^{{({\text{Sound}}/{\text{Photo}})}} }}{{{\text{PWV}}_{i}^{{({\text{GPS}})}} + {\text{PWV}}_{i}^{{({\text{Sound}}/{\text{Photo}})}} }}}} }}{{N_{\text{data}} }}} \times 100 $$
$$ {\text{RMDA}} = {\frac{{\sum\nolimits_{i = 1}^{N} {2 \times {\frac{{\left| {{\text{PWV}}_{i}^{{({\text{GPS}})}} - {\text{PWV}}_{i}^{{({\text{Sound}}/{\text{Photo}})}} } \right|}}{{{\text{PWV}}_{i}^{{({\text{GPS}})}} + {\text{PWV}}_{i}^{{({\text{Sound}}/{\text{Photo}})}} }}}} }}{{N_{\text{data}} }}} \times 100 $$
$$ {\text{RMSE}} = \sqrt {{\frac{{\sum\nolimits_{i = 1}^{N} {\left( {{\text{PWV}}_{i}^{{({\text{GPS}})}} - {\text{PWV}}_{i}^{{({\text{Sound}}/{\text{Photo}})}} } \right)^{2} } }}{{N_{\text{data}} }}}} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortiz de Galisteo, J.P., Toledano, C., Cachorro, V. et al. Improvement in PWV estimation from GPS due to the absolute calibration of antenna phase center variations. GPS Solut 14, 389–395 (2010). https://doi.org/10.1007/s10291-010-0163-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-010-0163-y

Keywords

Navigation