Skip to main content
Log in

Simple measure of similarity for the market graph construction

  • Original Paper
  • Published:
Computational Management Science Aims and scope Submit manuscript

Abstract

A simple measure of similarity for the construction of the market graph is proposed. The measure is based on the probability of the coincidence of the signs of the stock returns. This measure is robust, has a simple interpretation, is easy to calculate and can be used as measure of similarity between any number of random variables. For the case of pairwise similarity the connection of this measure with the sign correlation of Fechner is noted. The properties of the proposed measure of pairwise similarity in comparison with the classic Pearson correlation are studied. The simple measure of pairwise similarity is applied (in parallel with the classic correlation) for the study of Russian and Swedish market graphs. The new measure of similarity for more than two random variables is introduced and applied to the additional deeper analysis of Russian and Swedish markets. Some interesting phenomena for the cliques and independent sets of the obtained market graphs are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson TW (1957) An introduction to multivariate statistical analysis. Wiley, New York

    Google Scholar 

  • Boginski V, Butenko S, Pardalos PM (2003) On structural properties of the market graph. In: Nagurney A (ed) Innovations in financial and economic networks. Edward Elgar Publishers, Northampton

    Google Scholar 

  • Boginski V, Butenko S, Pardalos PM (2005) Statistical analysis of financial networks. Comput Stat Data Anal 48:431–443

    Article  Google Scholar 

  • Boginski V, Butenko S, Pardalos M (2006) ining market data: a network approach. Comput Operat Res 33:3171–3184

    Article  Google Scholar 

  • Bonanno G, Caldarelli G, Lillo F, Micciche S, Vandewalle N, Mantegna RN (2004) Networks of equities in financial markets. Eur Phys J 38:363–371

    Google Scholar 

  • Devlin SJ, Gnanadesikan R, Kettenring JR (1975) Robust estimation and outlier detection with correlation coefficient. Biometrika 62:531–545

    Article  Google Scholar 

  • Garas A, Argyrakis P (2007) Correlation study of the Athens stock exchange. Physica 380:399–410

    Article  Google Scholar 

  • Huber PJ (1981) Robust statistics. Wiley, New York

    Book  Google Scholar 

  • Kendall MG, Stuart A (1967) The advanced theory of statistics. Inference and relationship, vol 2. Charles Griffin & Co. Ltd., London

    Google Scholar 

  • Kim HJ, Lee Y, Kahng B, Kim IM (2002) Scale-free networks in financial correlations. J Phys Soc Jpn 71:1–5

    Article  Google Scholar 

  • Kim DY, Jeong H (2005) Systematic analysis of group identification in stock markets. Phys Rev 72

  • Laloux L, Cizeau P, Bouchaud JP, Potters M (1999) Noise dressing of financial correlation matrices. Phys Rev 83:1467–1470

    Google Scholar 

  • Mantegna RN (1999) Hierarchical structure in financial market. Eur Phys J 11:193–197

    Google Scholar 

  • Mantegna RN, Stanley HE (2000) An introduction to econophysics: correlations and complexity in finance. Cambridge University Press, Cambridge

    Google Scholar 

  • Onnela JP, Kaski K, Kertesz KJ (2004) Clustering and information in correlation based financial networks. Eur Phys J 38:353

    Google Scholar 

  • Plerou V, Gopikrishnan P, Rosenow B, Amaral LAN, Stenley HS (1999) Universal and nonuniversal properties of cross correlations in financial time series. Phys Rev 83:1471–1474

    Google Scholar 

  • Tumminello M, Aste T, Matteo TD, Mantegna RN (2005) A tool for filtering information in complex systems. Proc Natl Acad Sci 102:10421–10426

    Article  Google Scholar 

  • Tumminello M, Aste T, Matteo TD, Mantegna RN (2007) Correlation based networks of equity returns sampled at different time horizons. Eur Phys J 55(2):209–217

    Google Scholar 

  • Tumminello M, Lillo F, Mantegna RN (2010) Correlation, hierarchies and networks in financial markets. J Econ Behav Org 75:40–58

    Google Scholar 

  • Wilcox RR (2005) Introduction to robust estimation and hypothesis testing. Academic Press, San Diego

    Google Scholar 

  • Zebende GF (2011) DCCA cross-correlation coefficient: quantifying level of cross-correlation. Physica 390:614–618

    Article  Google Scholar 

Download references

Acknowledgments

The authors are partially supported by LATNA Laboratory, NRU HSE, RF government grant, ag. 11.G34.31.0057.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery A. Kalyagin.

Appendices

Appendix A: Derivation of the formulas for connection between the classical and the sign correlation coefficients for the normal distribution

Suppose that \(X,Y\) are normally distributed random variables and the correlation coefficient between \(X\) and \(Y\) is \(\rho (X,Y)=\rho \).

Consider the random variables \(U,V\) having normal distribution with zero mean and variance equal to one, and such that \(\rho (U,V)=0\). Let the random variable \(X=\alpha U + \beta V\), the random variable \(Y=\gamma U + \delta V\). To ensure that \(\rho (X,Y)=\rho \) it is necessary to satisfy the following conditions:

$$\begin{aligned} \left\{ \begin{array}{l} \alpha ^2+\beta ^2=1 \\ \gamma ^2+\delta ^2=1 \\ \alpha \gamma +\beta \delta =\rho \end{array} \right. \end{aligned}$$

This equation system allows the following solution: \(\alpha =\beta =\frac{1}{\sqrt{2}}\), \(\gamma =\frac{1}{\sqrt{2}}(\rho +\sqrt{1-\rho ^2})\), \(\delta =\frac{1}{\sqrt{2}}(\rho -\sqrt{1-\rho ^2})\). Thus, random variables \(X = \frac{U}{\sqrt{2}} + \frac{V}{\sqrt{2}}\) and \(Y = \frac{(\rho + \sqrt{1-\rho ^2})U}{\sqrt{2}} + \frac{(\rho - \sqrt{1-\rho ^2})V}{\sqrt{2}}\) have correlation coefficient \(\rho \).

$$\begin{aligned}&P(\{sign(X)=sign(Y)\}) = P(X > 0, Y > 0) + P(X < 0, Y < 0)\nonumber \\&\quad =P(U + V > 0, (\rho + \sqrt{1 - \rho ^2})U + (\rho - \sqrt{1 - \rho ^2})V > 0) \nonumber \\&\quad +P(U + V < 0, (\rho + \sqrt{1 - \rho ^2})U + (\rho - \sqrt{1 - \rho ^2})V < 0) \end{aligned}$$
(17)

Let \((\rho +\sqrt{1-\rho ^2})>0\), then (17) looks like:

$$\begin{aligned}&P(\{sign(X)=sign(Y)\}) \nonumber \\&\quad =P\left( U > -V, U > -\frac{(\rho - \sqrt{1 - \rho ^2})}{(\rho + \sqrt{1 - \rho ^2})}V\right) + P\left( U < -V, U < -\frac{(\rho - \sqrt{1 - \rho ^2})}{(\rho + \sqrt{1 - \rho ^2})}V\right) \nonumber \\&\quad = P\left( U > -V, U > \frac{2\rho \sqrt{1 - \rho ^2} - 1}{2\rho ^2 - 1}V\right) + P\left( U < -V, U < \frac{2\rho \sqrt{1 \!-\! \rho ^2} \!-\! 1}{2\rho ^2 \!-\! 1}V\right) \qquad \end{aligned}$$
(18)

As the random variables \(U,V \sim N(0,1)\) and are independent, then the probability of hitting the sector formed by two lines from \((0,0)\) at angle \(\alpha \), equals to \(\frac{\alpha }{2\pi }\).

Angle between lines \(U=-V\) and \(U=\frac{2\rho \sqrt{1 - \rho ^2}-1}{2\rho ^2 - 1}V\) forming the sector \(\left( U > -V, U > \frac{2\rho \sqrt{1 - \rho ^2}-1}{2\rho ^2 - 1}V\right) \), equals to \(\alpha =\frac{3\pi }{4}-arctg\left( \frac{2\rho \sqrt{1 - \rho ^2}-1}{2\rho ^2 - 1}\right) \).

Consequently,

$$\begin{aligned} P\left( U > -V, U > (2\rho \sqrt{1 - \rho ^2}-1)V\right)&= \frac{3}{8}-\frac{arctg\left( \frac{2\rho \sqrt{1 - \rho ^2}-1}{2\rho ^2 - 1}\right) }{2\pi },\\ P\left( U < -V, U < (2\rho \sqrt{1 - \rho ^2}-1)V\right)&= \frac{3}{8}-\frac{arctg\left( \frac{2\rho \sqrt{1 - \rho ^2}-1}{2\rho ^2 - 1}\right) }{2\pi }. \end{aligned}$$

Thus,

$$\begin{aligned}&P(\{sign(X)=sign(Y)\})\\&\quad =2\left( \frac{3}{8}-\frac{arctg\left( \frac{2\rho \sqrt{1 - \rho ^2}-1}{2\rho ^2 - 1}\right) }{2\pi }\right) =\frac{3}{4}-\frac{arctg\left( \frac{2\rho \sqrt{1 - \rho ^2}-1}{2\rho ^2 - 1}\right) }{\pi },\rho _{XY}^S\\&\quad =\frac{3}{2}-\frac{2arctg\left( \frac{2\rho \sqrt{1 - \rho ^2}-1}{2\rho ^2 - 1}\right) }{\pi }-1=\frac{1}{2}-\frac{arctg\left( \frac{2\rho \sqrt{1 - \rho ^2}-1}{2\rho ^2 - 1}\right) }{\pi /2}. \end{aligned}$$

Let \((\rho +\sqrt{1-\rho ^2})<0\), then (17) looks like:

$$\begin{aligned}&P(\{sign(X)=sign(Y)\}) \nonumber \\&\quad = P\left( U > -V, U < -\frac{(\rho - \sqrt{1 - \rho ^2})}{(\rho + \sqrt{1 - \rho ^2})}V\right) + P\left( U < -V, U > -\frac{(\rho - \sqrt{1 - \rho ^2})}{(\rho + \sqrt{1 - \rho ^2})}V\right) \nonumber \\&\quad =P\left( U > -V, U < \frac{2\rho \sqrt{1 - \rho ^2}-1}{2\rho ^2 - 1}V\right) + P\left( U < -V, U > \frac{2\rho \sqrt{1 - \rho ^2}-1}{2\rho ^2 - 1}V\right) \nonumber \\ \end{aligned}$$
(19)

Angle between lines \(U=-V\) and \(U=\frac{2\rho \sqrt{1 - \rho ^2} - 1}{2\rho ^2 - 1}V\) forming the sector \(\left( U > -V, U < \frac{2\rho \sqrt{1 - \rho ^2} - 1}{2\rho ^2 - 1}V\right) \), equals to \(\alpha =\frac{\pi }{4}-arctg\left( \frac{2\rho \sqrt{1 - \rho ^2} - 1}{2\rho ^2 - 1}\right) \).

Consequently,

$$\begin{aligned} P\left( U > -V, U < \frac{2\rho \sqrt{1 - \rho ^2} - 1}{2\rho ^2 - 1}V\right)&= \frac{1}{8}+\frac{arctg\left( \frac{2\rho \sqrt{1 - \rho ^2}-1}{2\rho ^2 - 1}\right) }{2\pi },\\ P\left( U < -V, U > \frac{2\rho \sqrt{1 - \rho ^2} - 1}{2\rho ^2 - 1}V\right)&= \frac{1}{8}+\frac{arctg\left( \frac{2\rho \sqrt{1 - \rho ^2}-1}{2\rho ^2 - 1}\right) }{2\pi }. \end{aligned}$$

Thus,

$$\begin{aligned} P(\{sign(X)=sign(Y)\})&= \frac{1}{4}+\frac{arctg\left( \frac{2\rho \sqrt{1 - \rho ^2}-1}{2\rho ^2 - 1}\right) }{\pi },\\ \rho _{XY}^S&= \frac{arctg\left( \frac{2\rho \sqrt{1 - \rho ^2}-1}{2\rho ^2 - 1}\right) }{\pi /2}-\frac{1}{2}. \end{aligned}$$

If \((\rho +\sqrt{1-\rho ^2})=0\), or \(\rho =-\frac{\sqrt{2}}{2}\), (17) looks like this:

$$\begin{aligned} P(\{sign(X)=sign(Y)\})&= P(U>-V,V<0)+P(U<-V,V>0)\nonumber \\&= \frac{1}{8} + \frac{1}{8} = \frac{1}{4}\\ \rho _{XY}^S&= -\frac{1}{2}. \end{aligned}$$

Thus, the sign correlation coefficient as a function of the classical correlation coefficient is given by:

$$\begin{aligned} \rho _{XY}^S = \left\{ \begin{array}{ll} \frac{1}{2}-\frac{arctg\left( \frac{2\rho \sqrt{1 - \rho ^2}-1}{2\rho ^2 - 1}\right) }{\pi /2}, &{} \rho > -\frac{\sqrt{2}}{2} \\ -\frac{1}{2}, &{} \rho = -\frac{\sqrt{2}}{2} \\ \frac{arctg\left( \frac{2\rho \sqrt{1 - \rho ^2}-1}{2\rho ^2 - 1}\right) }{\pi /2}-\frac{1}{2}, &{} \rho < -\frac{\sqrt{2}}{2} \\ \end{array} \right. \end{aligned}$$
(20)

Appendix B: Contents of maximum cliques and independent sets for Russian and Swedish market graphs

See Tables 8, 9, 10, 11.

Table 8 Maximum independent set, Russia
Table 9 Maximum independent set, Sweden
Table 10 Maximum clique, Russia
Table 11 Maximum clique, Sweden

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bautin, G.A., Kalyagin, V.A., Koldanov, A.P. et al. Simple measure of similarity for the market graph construction. Comput Manag Sci 10, 105–124 (2013). https://doi.org/10.1007/s10287-013-0169-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10287-013-0169-3

Keywords

Navigation