Skip to main content

Advertisement

Log in

Increased markers of cardiac vagal activity in leucine-rich repeat kinase 2-associated Parkinson’s disease

  • Research Article
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Purpose

Cardiac autonomic dysfunction manifests as reduced heart rate variability (HRV) in idiopathic Parkinson’s disease (PD), but no significant reduction has been found in PD patients who carry the LRRK2 mutation. Novel HRV features have not been investigated in these individuals. We aimed to assess cardiac autonomic modulation through standard and novel approaches to HRV analysis in individuals who carry the LRRK2 G2019S mutation.

Methods

Short-term electrocardiograms were recorded in 14 LRRK2-associated PD patients, 25 LRRK2-non-manifesting carriers, 32 related non-carriers, 20 idiopathic PD patients, and 27 healthy controls. HRV measures were compared using regression modeling, controlling for age, sex, mean heart rate, and disease duration. Discriminant analysis highlighted the feature combination that best distinguished LRRK2-associated PD from controls.

Results

Beat-to-beat and global HRV measures were significantly increased in LRRK2-associated PD patients compared with controls (e.g., deceleration capacity of heart rate: p = 0.006) and idiopathic PD patients (e.g., 8th standardized moment of the interbeat interval distribution: p = 0.0003), respectively. LRRK2-associated PD patients also showed significantly increased irregularity of heart rate dynamics, as quantified by Rényi entropy, when compared with controls (p = 0.002) and idiopathic PD patients (p = 0.0004). Ordinal pattern statistics permitted the identification of LRRK2-associated PD individuals with 93% sensitivity and 93% specificity. Consistent results were found in a subgroup of LRRK2-non-manifesting carriers when compared with controls.

Conclusions

Increased beat-to-beat HRV in LRRK2 G2019S mutation carriers compared with controls and idiopathic PD patients may indicate augmented cardiac autonomic cholinergic activity, suggesting early impairment of central vagal feedback loops in LRRK2-associated PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386(9996):896–912. https://doi.org/10.1016/S0140-6736(14)61393-3

    Article  CAS  PubMed  Google Scholar 

  2. Turkka JT, Tolonen U, Myllyla VV (1987) Cardiovascular reflexes in Parkinson’s disease. Eur Neurol 26(2):104–112

    Article  CAS  Google Scholar 

  3. Kallio M, Haapaniemi T, Turkka J, Suominen K, Tolonen U, Sotaniemi K, Heikkila VP, Myllyla V (2000) Heart rate variability in patients with untreated Parkinson’s disease. Eur J Neurol 7(6):667–672

    Article  CAS  Google Scholar 

  4. Maetzler W, Karam M, Berger MF, Heger T, Maetzler C, Ruediger H, Bronzova J, Lobo PP, Ferreira JJ, Ziemssen T, Berg D (2015) Time- and frequency-domain parameters of heart rate variability and sympathetic skin response in Parkinson’s disease. J Neural Transm 122(3):419–425. https://doi.org/10.1007/s00702-014-1276-1

    Article  CAS  PubMed  Google Scholar 

  5. Rodriguez M, Sabate M, Troncoso E (1996) Time and frequency domain analysis for the assessment of heart autonomic control in Parkinson’s disease. J Neural Transm 103(4):447–454

    Article  CAS  Google Scholar 

  6. Healy DG, Falchi M, O’Sullivan SS, Bonifati V, Durr A, Bressman S, Brice A, Aasly J, Zabetian CP, Goldwurm S, Ferreira JJ, Tolosa E, Kay DM, Klein C, Williams DR, Marras C, Lang AE, Wszolek ZK, Berciano J, Schapira AH, Lynch T, Bhatia KP, Gasser T, Lees AJ, Wood NW (2008) Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. Lancet Neurol 7(7):583–590. https://doi.org/10.1016/S1474-4422(08)70117-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. West AB, Moore DJ, Biskup S, Bugayenko A, Smith WW, Ross CA, Dawson VL, Dawson TM (2005) Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci USA 102(46):16842–16847. https://doi.org/10.1073/pnas.0507360102

    Article  CAS  PubMed  Google Scholar 

  8. Tijero B, Gomez Esteban JC, Somme J, Llorens V, Lezcano E, Martinez A, Rodriguez T, Berganzo K, Zarranz JJ (2013) Autonomic dysfunction in parkinsonian LRRK2 mutation carriers. Parkinsonism Relat Disord 19(10):906–909. https://doi.org/10.1016/j.parkreldis.2013.05.008

    Article  PubMed  Google Scholar 

  9. Visanji NP, Bhudhikanok GS, Mestre TA, Ghate T, Udupa K, AlDakheel A, Connolly BS, Gasca-Salas C, Kern DS, Jain J, Slow EJ, Faust-Socher A, Kim S, Azhu Valappil R, Kausar F, Rogaeva E, William Langston J, Tanner CM, Schüle B, Lang AE, Goldman SM, Marras C (2017) Heart rate variability in leucine-rich repeat kinase 2-associated Parkinson’s disease. Mov Disord 32(4):610–614. https://doi.org/10.1002/mds.26896

    Article  CAS  PubMed  Google Scholar 

  10. Solla P (2013) Non-motor symptoms and cardiovascular dysautonomia in Sardinian patients suffering from Parkinson’s disease with and without mutations of the LRRK2 gene. Doctoral Thesis, Universita’ degli Studi di Cagliari.

  11. Bauer A, Kantelhardt JW, Barthel P, Schneider R, Mäkikallio T, Ulm K, Hnatkova K, Schömig A, Huikuri HV, Bunde A, Malik M, Georg S (2006) Deceleration capacity of heart rate as a predictor of mortality after myocardial infarction: cohort study. Lancet 367:1674–1681

    Article  Google Scholar 

  12. Bandt C, Pompe B (2002) Permutation entropy: a natural complexity measure for time series. Phys Rev Lett 88(17):174102. https://doi.org/10.1103/PhysRevLett.88.174102

    Article  CAS  PubMed  Google Scholar 

  13. Cornforth DJ, Tarvainen MP, Jelinek HF (2014) How to calculate Renyi entropy from heart rate variability, and why it matters for detecting cardiac autonomic neuropathy. Front Bioeng Biotechnol 2:34. https://doi.org/10.3389/fbioe.2014.00034

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cornforth D, Jelinek HF, Tarvainen M (2015) A comparison of nonlinear measures for the detection of cardiac autonomic neuropathy from heart rate variability. Entropy 17(3):1425–1440

    Article  Google Scholar 

  15. Parlitz U, Berg S, Luther S, Schirdewan A, Kurths J, Wessel N (2012) Classifying cardiac biosignals using ordinal pattern statistics and symbolic dynamics. Comput Biol Med 42(3):319–327. https://doi.org/10.1016/j.compbiomed.2011.03.017

    Article  CAS  PubMed  Google Scholar 

  16. Rizas KD, Eick C, Doller AJ, Hamm W, von Stuelpnagel L, Zuern CS, Barthel P, Schmidt G, Bauer A (2018) Bedside autonomic risk stratification after myocardial infarction by means of short-term deceleration capacity of heart rate. Europace 20(Fi1):f129–f136. https://doi.org/10.1093/europace/eux167

    Article  PubMed  Google Scholar 

  17. Paisan-Ruiz C, Lang AE, Kawarai T, Sato C, Salehi-Rad S, Fisman GK, Al-Khairallah T, St George-Hyslop P, Singleton A, Rogaeva E (2005) LRRK2 gene in Parkinson disease: mutation analysis and case control association study. Neurology 65(5):696–700. https://doi.org/10.1212/01.wnl.0000167552.79769.b3

    Article  CAS  PubMed  Google Scholar 

  18. Marras C, Schule B, Munhoz RP, Rogaeva E, Langston JW, Kasten M, Meaney C, Klein C, Wadia PM, Lim SY, Chuang RS, Zadikof C, Steeves T, Prakash KM, de Bie RM, Adeli G, Thomsen T, Johansen KK, Teive HA, Asante A, Reginold W, Lang AE (2011) Phenotype in parkinsonian and nonparkinsonian LRRK2 G2019S mutation carriers. Neurology 77(4):325–333. https://doi.org/10.1212/WNL.0b013e318227042d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55(3):181–184

    Article  CAS  Google Scholar 

  20. Machado A, Migliaro ER, Contreras P, Coro F (2000) Automatic filtering of RR intervals for heart rate variability analysis. Ann Noninvasive Electrocardiol 5(3):255–261

    Article  Google Scholar 

  21. Stein PK, Le Q, Domitrovich PP (2008) Development of more erratic heart rate patterns is associated with mortality post-myocardial infarction. J Electrocardiol 41(2):110–115. https://doi.org/10.1016/j.jelectrocard.2007.11.005

    Article  PubMed  PubMed Central  Google Scholar 

  22. Stein PK, Domitrovich PP, Hui N, Rautaharju P, Gottdiener J (2005) Sometimes higher heart rate variability is not better heart rate variability: results of graphical and nonlinear analyses. J Cardiovasc Electrophysiol 16(9):954–959. https://doi.org/10.1111/j.1540-8167.2005.40788.x

    Article  PubMed  Google Scholar 

  23. Goldman S, Schuele B, Bhudhikanok G, Cash S, Korell M, Amiri Y, Meng C, Comyns K, Guest D, Rees L, Kim S, Kausar F, Sundarrajan S, Drabant Conley E, Eriksson N, Liang G, Brandabur M, Tetrud J, Langston J, Tanner C (2014) Heart Rate Variability in LRRK2 Parkinson’s Disease (S37.004). Neurology 82(10 Supplement)

  24. Kalia LV, Lang AE, Hazrati LN, Fujioka S, Wszolek ZK, Dickson DW, Ross OA, Van Deerlin VM, Trojanowski JQ, Hurtig HI, Alcalay RN, Marder KS, Clark LN, Gaig C, Tolosa E, Ruiz-Martinez J, Marti-Masso JF, Ferrer I, Lopez de Munain A, Goldman SM, Schule B, Langston JW, Aasly JO, Giordana MT, Bonifati V, Puschmann A, Canesi M, Pezzoli G, Maues De Paula A, Hasegawa K, Duyckaerts C, Brice A, Stoessl AJ, Marras C (2015) Clinical correlations with Lewy body pathology in LRRK2-related Parkinson disease. JAMA Neurol 72(1):100–105. https://doi.org/10.1001/jamaneurol.2014.2704

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dzamko N, Rowe DB, Halliday GM (2016) Increased peripheral inflammation in asymptomatic leucine-rich repeat kinase 2 mutation carriers. Mov Disord 31(6):889–897. https://doi.org/10.1002/mds.26529

    Article  CAS  PubMed  Google Scholar 

  26. Goldstein DS (2003) Dysautonomia in Parkinson’s disease: neurocardiological abnormalities. Lancet Neurol 2(11):669–676

    Article  Google Scholar 

  27. Barbic F, Perego F, Canesi M, Gianni M, Biagiotti S, Costantino G, Pezzoli G, Porta A, Malliani A, Furlan R (2007) Early abnormalities of vascular and cardiac autonomic control in Parkinson’s disease without orthostatic hypotension. Hypertension 49(1):120–126. https://doi.org/10.1161/01.hyp.0000250939.71343.7c(Dallas, Tex: 1979)

    Article  CAS  PubMed  Google Scholar 

  28. Goldstein DS, Imrich R, Peckham E, Holmes C, Lopez G, Crews C, Hardy J, Singleton A, Hallett M (2007) Neurocirculatory and nigrostriatal abnormalities in Parkinson disease from LRRK2 mutation. Neurology 69(16):1580–1584. https://doi.org/10.1212/01.wnl.0000268696.57912.64

    Article  CAS  PubMed  Google Scholar 

  29. Liu S-Y, Wile DJ, Fu JF, Valerio J, Shahinfard E, McCormick S, Mabrouk R, Vafai N, McKenzie J, Neilson N, Perez-Soriano A, Arena JE, Cherkasova M, Chan P, Zhang J, Zabetian CP, Aasly JO, Wszolek ZK, McKeown MJ, Adam MJ, Ruth TJ, Schulzer M, Sossi V, Stoessl AJ (2018) The effect of LRRK2 mutations on the cholinergic system in manifest and premanifest stages of Parkinson’s disease: a cross-sectional PET study. Lancet Neurol 17(4):309–316. https://doi.org/10.1016/S1474-4422(18)30032-2

    Article  PubMed  PubMed Central  Google Scholar 

  30. Barbic F, Galli M, Dalla Vecchia L, Canesi M, Cimolin V, Porta A, Bari V, Cerri G, Dipaola F, Bassani T, Cozzolino D, Pezzoli G, Furlan R (2014) Effects of mechanical stimulation of the feet on gait and cardiovascular autonomic control in Parkinson’s disease. J Appl Physiol 116(5):495–503. https://doi.org/10.1152/japplphysiol.01160.2013

    Article  PubMed  Google Scholar 

  31. Watkins LR, Goehler LE, Relton JK, Tartaglia N, Silbert L, Martin D, Maier SF (1995) Blockade of interleukin-1 induced hyperthermia by subdiaphragmatic vagotomy: evidence for vagal mediation of immune-brain communication. Neurosci Lett 183(1–2):27–31

    Article  CAS  Google Scholar 

  32. Geis GS, Wurster RD (1980) Cardiac responses during stimulation of the dorsal motor nucleus and nucleus ambiguus in the cat. Circ Res 46(5):606–611. https://doi.org/10.1161/01.res.46.5.606

    Article  CAS  PubMed  Google Scholar 

  33. Brockmann K, Apel A, Schulte C, Schneiderhan-Marra N, Pont-Sunyer C, Vilas D, Ruiz-Martinez J, Langkamp M, Corvol JC, Cormier F, Knorpp T, Joos TO, Gasser T, Schule B, Aasly JO, Foroud T, Marti-Masso JF, Brice A, Tolosa E, Marras C, Berg D, Maetzler W (2016) Inflammatory profile in LRRK2-associated prodromal and clinical PD. J Neuroinflammation 13(1):122. https://doi.org/10.1186/s12974-016-0588-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moehle MS, Webber PJ, Tse T, Sukar N, Standaert DG, DeSilva TM, Cowell RM, West AB (2012) LRRK2 inhibition attenuates microglial inflammatory responses. J Neurosci 32(5):1602–1611. https://doi.org/10.1523/jneurosci.5601-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405(6785):458–462. https://doi.org/10.1038/35013070

    Article  CAS  PubMed  Google Scholar 

  36. Stein PK (2005) Vagal tone: myths and realities. J Cardiovasc Electrophysiol 16(8):870–871. https://doi.org/10.1111/j.1540-8167.2005.50157.x

    Article  PubMed  Google Scholar 

  37. Kim J-S, Lee S-H, Oh Y-S, Park J-W, An J-Y, Park S-K, Han S-R, Lee K-S (2016) Cardiovascular autonomic dysfunction in mild and advanced Parkinson’s disease. J Mov Disord 9(2):97–103. https://doi.org/10.14802/jmd.16001

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vinik AI, Maser RE, Mitchell BD, Freeman R (2003) Diabetic autonomic neuropathy. Diabetes Care 26(5):1553–1579

    Article  Google Scholar 

  39. Sabino-Carvalho JL, Samora M, Teixeira AL, Daher M, Vianna LC (2019) Circulatory responses at the onset of handgrip exercise in patients with Parkinson’s disease. Exp Physiol 104(6):793–799. https://doi.org/10.1113/EP087620

    Article  PubMed  Google Scholar 

  40. Porta A, Bari V, Marchi A, De Maria B, Castiglioni P, di Rienzo M, Guzzetti S, Cividjian A, Quintin L (2015) Limits of permutation-based entropies in assessing complexity of short heart period variability. Physiol Meas 36(4):755–765. https://doi.org/10.1088/0967-3334/36/4/755

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all participants for their valuable contribution to this study. This work was facilitated by a travel grant awarded by the International Parkinson and Movement Disorder Society Pan American Section to CCN. The study was funded by a research grant awarded by The Michael J. Fox Foundation for Parkinson’s Research to CM and BS. All authors thank the anonymous reviewers for their constructive suggestions.

Funding

This work was supported by the Michael J. Fox Foundation for Parkinson’s Research [Grant Number MJFF 6896].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Carricarte Naranjo.

Ethics declarations

Conflict of interest

CCN reports employment with Universidad de La Habana, and grants from the International Brain Research Organization, International Parkinson and Movement Disorder Society, and Vrije Universiteit Brussel, Belgium. CM reports consultancies with Acorda Therapeutics; honoraria for teaching from EMD Serono, steering committee for Michael J. Fox Foundation; grants from the Michael J. Fox Foundation, Canadian Institutes of Health Research, International Parkinson and Movement Disorder Society, and National Institutes of Health Research; and employment with University Health Network. NPV reports none. DJC reports none. LS reports none. BS reports none. SMG reports employment with the University of California-San Francisco, San Francisco Veterans Affairs Health Care System, and grants from the Michael J. Fox Foundation, National Institute for Occupational Safety and Health (NIOSH), Biogen, and the U.S. Department of Defense. ME reports none. PKS reports none. AEL has served as an advisor for Abbvie, Acorda, Biogen, Bristol-Myers Squibb, Janssen, Sun Pharma, Kallyope, Merck, Paladin, and Corticobasal Degeneration Solutions; received honoraria from Sun Pharma, Medichem, Medtronic, AbbVie and Sunovion; received grants from Brain Canada, Canadian Institutes of Health Research, Corticobasal Degeneration Solutions, Edmond J. Safra Philanthropic Foundation, Michael J. Fox Foundation, the Ontario Brain Institute, National Parkinson Foundation, Parkinson Society Canada, and W. Garfield Weston Foundation; received publishing royalties from Elsevier, Saunders, Wiley-Blackwell, Johns Hopkins Press, and Cambridge University Press. HFJ reports none. AM reports employment with Universidad de La Habana.

Ethical standards

The study protocol was approved by the University Health Network Research Ethics Board (Toronto) and El Camino Hospital Institutional Review Board (Parkinson’s Institute). The study was performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Informed consent

All participants provided written informed consent prior to their inclusion in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 439 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carricarte Naranjo, C., Marras, C., Visanji, N.P. et al. Increased markers of cardiac vagal activity in leucine-rich repeat kinase 2-associated Parkinson’s disease. Clin Auton Res 29, 603–614 (2019). https://doi.org/10.1007/s10286-019-00632-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-019-00632-w

Keywords

Navigation