Skip to main content

Advertisement

Log in

A Detailed Systematic Review on Retinal Image Segmentation Methods

  • Review
  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

The separation of blood vessels in the retina is a major aspect in detecting ailment and is carried out by segregating the retinal blood vessels from the fundus images. Moreover, it helps to provide earlier therapy for deadly diseases and prevent further impacts due to diabetes and hypertension. Many reviews already exist for this problem, but those reviews have presented the analysis of a single framework. Hence, this article on retinal segmentation review has revealed distinct methodologies with diverse frameworks that are utilized for blood vessel separation. The novelty of this review research lies in finding the best neural network model by comparing its efficiency. For that, machine learning (ML) and deep learning (DL) were compared and have been reported as the best model. Moreover, different datasets were used to segment the retinal blood vessels. The execution of each approach is compared based on the performance metrics such as sensitivity, specificity, and accuracy using publically accessible datasets like STARE, DRIVE, ROSE, REFUGE, and CHASE. This article discloses the implementation capacity of distinct techniques implemented for each segmentation method. Finally, the finest accuracy of 98% and sensitivity of 96% were achieved for the technique of Convolution Neural Network with Ranking Support Vector Machine (CNN-rSVM). Moreover, this technique has utilized public datasets to verify efficiency. Hence, the overall review of this article has revealed a method for earlier diagnosis of diseases to deliver earlier therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Uysal E, Güraksin GE: Computer-aided retinal vessel segmentation in retinal images: convolutional neural networks. Multimed Tools Appl 1–24, 2020. https://doi.org/10.1007/s11042-020-09372-w

  2. Zhang B, Zhang L, Zhang L, Karray F: Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Comput Biol Med 40(4):438-445, 2010. https://doi.org/10.1016/j.compbiomed.2010.02.008

    Article  PubMed  Google Scholar 

  3. Biswal B, Pooja T, Subrahmanyam NB: Robust retinal blood vessel segmentation using line detectors with multiple masks. IET Image Process 12(3):389-399, 2017. https://doi.org/10.1049/iet-ipr.2017.0329

    Article  Google Scholar 

  4. Marín D, Aquino A, Gegundez-Arias ME, Bravo Caro JM: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans Med Imaging 30(1):146-158, 2010. https://doi.org/10.1109/TMI.2010.2064333

    Article  PubMed  Google Scholar 

  5. Wu Y, Xia Y, Song Y, Zhang Y, Cai W: NFN+: A novel network followed network for retinal vessel segmentation. Neural Netw, 2020. https://doi.org/10.1016/j.neunet.2020.02.018

    Article  PubMed  Google Scholar 

  6. Melinščak M, Prentašić P, Lončarić S: Retinal vessel segmentation using deep neural networks. 10th International Conference on Computer Vision Theory and Applications (VISAPP 2015), 2015.

  7. Feldman-Billard S, Larger É, Massin P: Early worsening of diabetic retinopathy after rapid improvement of blood glucose control in patients with diabetes. Diabetes Metab 44(1):4-14, 2018. https://doi.org/10.1016/j.diabet.2017.10.014

    Article  CAS  PubMed  Google Scholar 

  8. Alonso‐Montes C, Vilariño DL, Dudek P, Penedo MG: Fast retinal vessel tree extraction: A pixel parallel approach. Int J Circuit Theory Appl 36(5‐6):641-651, 2008. https://doi.org/10.1002/cta.512

    Article  Google Scholar 

  9. Romero-Aroca P: Managing diabetic macular edema: the leading cause of diabetes blindness. World J Diabetes 2(6):98, 2011. https://doi.org/10.4239/wjd.v2.i6.98

    Article  PubMed  PubMed Central  Google Scholar 

  10. Palomera-Pérez MA, Martinez-Perez ME, Benítez-Pérez H, Ortega-Arjona JL: Parallel multiscale feature extraction and region growing: application in retinal blood vessel detection. IEEE Trans Inf Technol Biomed 14(2):500-506, 2009. https://doi.org/10.1109/TITB.2009.2036604

    Article  PubMed  Google Scholar 

  11. Perfetti R, Ricci E, Casali D et al: Cellular neural networks with virtual template expansion for retinal vessel segmentation. IEEE Trans Circuits Syst, II, Exp Briefs 54(2):141-145, 2007. https://doi.org/10.1109/TCSII.2006.886244

    Article  Google Scholar 

  12. Delibasis KK, Kechriniotis AI, Tsonos C et al: Automatic model-based tracing algorithm for vessel segmentation and diameter estimation. Comput Methods Programs Biomed 100(2):108-122, 2010. https://doi.org/10.1016/j.cmpb.2010.03.004

    Article  PubMed  Google Scholar 

  13. Soares JVB, Leandro JJG, Cesar RM et al: Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans Med Imaging 25(9):1214-1222, 2006. https://doi.org/10.1109/TMI.2006.879967

    Article  PubMed  Google Scholar 

  14. Ghoshal R, Saha A, Das S: An improved vessel extraction scheme from retinal fundus images. Multimed Tools Appl 78(18):25221-25239, 2019. https://doi.org/10.1007/s11042-019-7719-9

    Article  Google Scholar 

  15. Witmer MT, Kiss S: Wide-field imaging of the retina. Surv Ophthalmol 58(2):143-154, 2013. https://doi.org/10.1016/j.survophthal.2012.07.003

    Article  PubMed  Google Scholar 

  16. Wang C, Zhao Z, Ren Q, Xu Y, Yu Y: Dense u-net based on patch-based learning for retinal vessel segmentation. Entropy 21(2):168, 2019. https://doi.org/10.3390/e21020168

    Article  PubMed Central  Google Scholar 

  17. Mendonca AM, Campilho A: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans Med Imaging 25(9):1200-1213, 2006. https://doi.org/10.1109/TMI.2006.879955

    Article  PubMed  Google Scholar 

  18. Guo Y, Camino A, Zhang M et al: Automated segmentation of retinal layer boundaries and capillary plexuses in wide-field optical coherence tomographic angiography. Biomed Opt Express 9(9):4429-4442, 2018. https://doi.org/10.1364/BOE.9.004429

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ricci E, Perfetti R: Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans Med Imaging 26(10):1357-1365, 2007. https://doi.org/10.1109/TMI.2007.898551

    Article  PubMed  Google Scholar 

  20. Tanihara H, Inoue T, Yamamoto T et al: Phase 2 randomized clinical study of a Rho kinase inhibitor, K-115, in primary open-angle glaucoma and ocular hypertension. Am J Ophthalmol 156(4):731-736, 2013. https://doi.org/10.1016/j.ajo.2013.05.016

    Article  CAS  PubMed  Google Scholar 

  21. Cherukuri V, V Kumar BG, Bala R, Monga V: Deep retinal image segmentation with regularization under geometric priors. IEEE Trans Image Process 29:2552-2567, 2020. https://doi.org/10.1109/TIP.2019.2946078

    Article  Google Scholar 

  22. Leopold HA, Orchard J, Zelek JS et al: Pixelbnn: Augmenting the pixelcnn with batch normalization and the presentation of a fast architecture for retinal vessel segmentation. J Imaging 5(2):26, 2019. https://doi.org/10.3390/jimaging5020026

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chibber R, Ben-Mahmud BM, Chibber S et al: Leukocytes in diabetic retinopathy. Curr Diabetes Rev 3(1):3-14, 2007. https://doi.org/10.2174/157339907779802139

    Article  CAS  PubMed  Google Scholar 

  24. Simonett JM, Scarinci F, Picconi F et al: Early microvascular retinal changes in optical coherence tomography angiography in patients with type 1 diabetes mellitus. Acta Ophthalmol 95(8):e751-e755, 2017. https://doi.org/10.1111/aos.13404

    Article  PubMed  Google Scholar 

  25. Odstrcilik J, Kolar R, Budai A et al: Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database. IET Image Process 7(4):373-383, 2013. https://doi.org/10.1049/iet-ipr.2012.0455

    Article  Google Scholar 

  26. Feng Z, Yang J, Yao L: Patch-based fully convolutional neural network with skip connections for retinal blood vessel segmentation. 2017 IEEE International Conference on Image Processing (ICIP), IEEE, 2017. https://doi.org/10.1109/ICIP.2017.8296580

  27. Wang X, Jiang X, Ren J: Blood vessel segmentation from fundus image by a cascade classification framework. Pattern Recognit 88:331-341, 2019. https://doi.org/10.1016/j.patcog.2018.11.030

    Article  Google Scholar 

  28. Memari N, Ramli AR, Bin Saripan MI et al: Supervised retinal vessel segmentation from color fundus images based on matched filtering and AdaBoost classifier. PloS one 12(12):e0188939, 2017. https://doi.org/10.1371/journal.pone.0188939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liskowski P, Krawiec K: Segmenting retinal blood vessels with deep neural networks. IEEE Trans Med Imaging 35(11):2369-2380, 2016. https://doi.org/10.1109/TMI.2016.2546227

    Article  PubMed  Google Scholar 

  30. Zunino L, Soriano MC, Rosso OA: Distinguishing chaotic and stochastic dynamics from time series by using a multiscale symbolic approach. Phys Rev E 86(4):046210, 2012. https://doi.org/10.1103/PhysRevE.86.046210

    Article  CAS  Google Scholar 

  31. Fraz MM, Remagnino P, Hoppe A et al: Blood vessel segmentation methodologies in retinal images–a survey. Comput Methods Programs Biomed 108(1):407-433, 2012. https://doi.org/10.1016/j.cmpb.2012.03.009

    Article  CAS  PubMed  Google Scholar 

  32. Jin Q, Chen Q, Meng Z, Wang B, Su R: Construction of retinal vessel segmentation models based on convolutional neural network. Neural Process Lett 52(2):1005-1022, 2020. https://doi.org/10.1007/s11063-019-10011-1

    Article  Google Scholar 

  33. Aslani S, Sarnel H: A new supervised retinal vessel segmentation method based on robust hybrid features. Biomed Signal Process Control 30:1-12, 2016. https://doi.org/10.1016/j.bspc.2016.05.006

    Article  Google Scholar 

  34. Morales S, Naranjo V, Angulo J et al: Segmentation and analysis of retinal vascular tree from fundus images processing. International Conference on Bio-inspired Systems and Signal Processing, SciTePress, 2, 2012.

  35. Vlachos M, Dermatas E: Multi-scale retinal vessel segmentation using line tracking. Comput Med Imaging Graph 34(3):213-227, 2010. https://doi.org/10.1016/j.compmedimag.2009.09.006

    Article  PubMed  Google Scholar 

  36. Mo J, Zhang L: Multi-level deep supervised networks for retinal vessel segmentation. Int J Comput Assist Radiol Surg 12(12):2181-2193, 2017. https://doi.org/10.1007/s11548-017-1619-0

    Article  PubMed  Google Scholar 

  37. Fraz MM, Remagnino P, Hoppe A et al: A supervised method for retinal blood vessel segmentation using line strength, multiscale Gabor and morphological features. 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), IEEE, 2011. https://doi.org/10.1109/ICSIPA.2011.6144129

  38. Durkee MS, Nash LD, Nooshabadi F: Fabrication and characterization of optical tissue phantoms containing macrostructure. JoVE (Journal of Visualized Experiments) 132:e57031, 2018. https://doi.org/10.3791/57031

  39. Lin Y, Zhang H, Hu G: Automatic retinal vessel segmentation via deeply supervised and smoothly regularized network. IEEE Access 7:57717-57724, 2018. https://doi.org/10.1109/ACCESS.2018.2844861

    Article  Google Scholar 

  40. Owen CG, Rudnicka AR, Mullen R et al: Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina (CAIAR) program. Invest Ophthalmol Vis Sci 50(5):2004-2010, 2009. https://doi.org/10.1167/iovs.08-3018

    Article  PubMed  Google Scholar 

  41. Lamb TD, Collin SP, Pugh EN: Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup. Nat Rev Neurosci 8(12):960-976, 2007. https://doi.org/10.1038/nrn2283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lian S, Li L, Lian G et al: A global and local enhanced residual u-net for accurate retinal vessel segmentation. IEEE/ACM Trans Comput Biol Bioinform, 2019. https://doi.org/10.1109/TCBB.2019.2917188

    Article  Google Scholar 

  43. Gehring WJ: Historical perspective on the development and evolution of eyes and photoreceptors. Int J Dev Biol 48(8-9):707-717, 2004. https://doi.org/10.1387/ijdb.041900wg

    Article  PubMed  Google Scholar 

  44. Hou Y: Automatic segmentation of retinal blood vessels based on improved multiscale line detection. J Comput Sci Eng 8(2):119-128, 2014.

    Article  Google Scholar 

  45. Graf HG, Dollberg A et al: Active retina implant with a multiplicity of pixel elements. U.S. Patent No. 7,751,896, 2010.

  46. Sim DA, Keane PA, Tufail A et al: Automated retinal image analysis for diabetic retinopathy in telemedicine. Curr Diab Rep 15(3):14, 2015. https://doi.org/10.1007/s11892-015-0577-6

    Article  CAS  PubMed  Google Scholar 

  47. Hayreh SS, Zimmerman MB: Central retinal artery occlusion: visual outcome. Am J Ophthalmol 140(3):376-e1, 2005. https://doi.org/10.1016/j.ajo.2005.03.038

    Article  PubMed  Google Scholar 

  48. Wong TY, Klein R et al: Retinal microvascular abnormalities and their relationship with hypertension, cardiovascular disease, and mortality. Surv Ophthalmol 46(1):59-80, 2001. https://doi.org/10.1016/S0039-6257(01)00234-X

    Article  CAS  PubMed  Google Scholar 

  49. Hashizume H, Baluk P, Morikawa S et al: Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156(4):1363-1380, 2000. https://doi.org/10.1016/S0002-9440(10)65006-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Casini G, Rickman DW, Brecha NC: AII amacrine cell population in the rabbit retina: identification by parvalbumin immunoreactivity. J Comp Neurol 356(1):132-142, 1995. https://doi.org/10.1002/cne.903560109

    Article  CAS  PubMed  Google Scholar 

  51. Popescu LM, Manole E, Şerboiu CS et al: Identification of telocytes in skeletal muscle interstitium: implication for muscle regeneration. J Cell Mol Med 15(6):1379-1392, 2011. https://doi.org/10.1111/j.1582-4934.2011.01330.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Andersson RE: The natural history and traditional management of appendicitis revisited: spontaneous resolution and predominance of prehospital perforations imply that a correct diagnosis is more important than an early diagnosis. World J Surg 31(1):86-92, 2007. https://doi.org/10.1007/s00268-006-0056-y

    Article  PubMed  Google Scholar 

  53. Barkana BD, Saricicek I, Yildirim B: Performance analysis of descriptive statistical features in retinal vessel segmentation via fuzzy logic, ANN, SVM, and classifier fusion. Knowl Based Syst 118:165-176, 2017. https://doi.org/10.1016/j.knosys.2016.11.022

    Article  Google Scholar 

  54. Zhang S, Fu H, Xu Y, Liu Y, Tan M: Retinal image segmentation with a structure-texture demixing network. In: Martel AL et al (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science, vol 12265. Springer, Cham, 2020. https://doi.org/10.1007/978-3-030-59722-1_74

  55. Li X, Jiang Y, Li M, Yin S: Lightweight attention convolutional neural network for retinal vessel image segmentation. IEEE Trans Industr Inform 17(3):1958-1967, 2021. https://doi.org/10.1109/TII.2020.2993842

    Article  Google Scholar 

  56. Wang Y, Zhang J, An C: A Segmentation Based Robust Deep Learning Framework for Multimodal Retinal Image Registration. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1369–1373, 2020. https://doi.org/10.1109/ICASSP40776.2020.9054077

  57. Alhussein M, Aurangzeb K, Haider SI: An unsupervised retinal vessel segmentation using hessian and intensity based approach. IEEE Access 8:165056-165070, 2020. https://doi.org/10.1109/ACCESS.2020.3022943

    Article  Google Scholar 

  58. Ma Y, Hao H, Xie J et al: ROSE: A retinal OCT-angiography vessel segmentation dataset and new model. IEEE Transac Med Imag 40(3):928-939, 2021. https://doi.org/10.1109/TMI.2020.3042802

    Article  Google Scholar 

  59. Tong H, Fang Z, Wei Z et al: SAT-Net: a side attention network for retinal image segmentation. Appl Intell 51:5146–5156, 2021. https://doi.org/10.1007/s10489-020-01966-z

    Article  Google Scholar 

  60. Ghosh SK, Ghosh A: A novel retinal image segmentation using rSVM boosted convolutional neural network for exudates detection. Biomed Signal Process Control 68:102785, 2021.

    Article  Google Scholar 

  61. Guo F, Li W, Kuang Z, Tang J: MES-Net: a new network for retinal image segmentation. Multimed Tools Appl 80:14767–14788, 2021. https://doi.org/10.1007/s11042-021-10580-1

    Article  Google Scholar 

  62. Jiang Y, Liu W, Wu C, Yao H: Multi-scale and multi-branch convolutional neural network for retinal image segmentation. Symmetry 13(3):365, 2021. https://doi.org/10.3390/sym13030365

    Article  Google Scholar 

  63. Boudegga H, Elloumi Y, Akil M, Bedoui MH, Kachouri R, Abdallah AB: Fast and efficient retinal blood vessel segmentation method based on deep learning network. Comput Med Imaging Graph 90:101902, 2021. https://doi.org/10.1016/j.compmedimag.2021.101902

    Article  PubMed  Google Scholar 

  64. Abràmoff MD, Garvin MD, Sonka M: Retinal imaging and image analysis. IEEE Reviews in Biomedical Engineering 3:169-208, 2010. https://doi.org/10.1109/RBME.2010.2084567

    Article  PubMed  PubMed Central  Google Scholar 

  65. Swanson EA, Izatt JA, Hee MR, Huang D, Lin CP, Schuman JS, Puliafito CA, Fujimoto JG: In vivo retinal imaging by optical coherence tomography. Opt Lett 18:1864-1866, 1993. https://doi.org/10.1364/OL.18.001864

    Article  CAS  PubMed  Google Scholar 

  66. Cole ED, Novais EA, Louzada RN, Waheed NK: Contemporary retinal imaging techniques in diabetic retinopathy: a review. Clin Exp Ophthalmol 44(4):289-299, 2016.

    Article  Google Scholar 

  67. Asakawa K, Kato S, Shoji N, Morita T, Shimizu K: Evaluation of optic nerve head using a newly developed stereo retinal imaging technique by glaucoma specialist and non–expert-certified orthoptist. J Glaucoma 22(9):698-706, 2013. https://doi.org/10.1097/IJG.0b013e318264be18

    Article  PubMed  Google Scholar 

  68. Heneghan C, Flynn J, O'Keefe M, Cahill M: Characterization of changes in blood vessel width and tortuosity in retinopathy of prematurity using image analysis. Med Image Anal 6(4):407-429, 2002. https://doi.org/10.1016/S1361-8415(02)00058-0

    Article  PubMed  Google Scholar 

  69. Yu DY, Paula KY, Cringle SJ et al: Functional and morphological characteristics of the retinal and choroidal vasculature. Prog Retin Eye Res 40:53-93, 2014. https://doi.org/10.1016/j.preteyeres.2014.02.001

    Article  PubMed  Google Scholar 

  70. Chaudhuri S, Chatterjee S, Katz N et al: Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans Med Imaging 8(3):263-269, 1989. https://doi.org/10.1109/42.34715

    Article  CAS  PubMed  Google Scholar 

  71. Hilas CS, Mastorocostas PA: An application of supervised and unsupervised learning approaches to telecommunications fraud detection. Knowl Based Syst 21(7):721-726, 2008. https://doi.org/10.1016/j.knosys.2008.03.026

    Article  Google Scholar 

  72. Mac Gillivray TJ, Trucco E, Cameron JR et al: Retinal imaging as a source of biomarkers for diagnosis, characterization and prognosis of chronic illness or long-term conditions. Br J Radiol 87(1040):20130832, 2014. https://doi.org/10.1259/bjr.20130832

    Article  CAS  Google Scholar 

  73. Franklin SW, Rajan SE: Diagnosis of diabetic retinopathy by employing image processing technique to detect exudates in retinal images. IET Image Process 8(10):601-609, 2014. https://doi.org/10.1049/iet-ipr.2013.0565

    Article  Google Scholar 

  74. Hassan SSA, Bong DBL, Premsenthil M: Detection of neovascularization in diabetic retinopathy. J Digit Imaging 25(3):437-444, 2012. https://doi.org/10.1007/s10278-011-9418-6

    Article  PubMed  Google Scholar 

  75. Anzalone A, Bizzarri F, Parodi M, Storace M: A modular supervised algorithm for vessel segmentation in red-free retinal images. Comput Biol Med 38(8):913-922, 2008. https://doi.org/10.1016/j.compbiomed.2008.05.006

    Article  PubMed  Google Scholar 

  76. Rani P, Priyadarshini N, Rajkumar ER et al: Retinal vessel segmentation under pathological conditions using supervised machine learning. 2016 International Conference on Systems in Medicine and Biology (ICSMB), IEEE, 2016. https://doi.org/10.1109/ICSMB.2016.7915088

  77. Rossant F, Ghorbel I, Bloch I et al: Automated segmentation of retinal layers in OCT imaging and derived ophthalmic measures. IEEE International Symposium on Biomedical Imaging: From Nano to Macro, IEEE, 2009. https://doi.org/10.1109/ISBI.2009.5193320

    Article  Google Scholar 

  78. Thangaraj S, Periyasamy V, Balaji R: Retinal vessel segmentation using neural network. IET Image Process 12(5):669-678, 2017. https://doi.org/10.1049/iet-ipr.2017.0284

    Article  Google Scholar 

  79. Dasgupta A, Singh S: A fully convolutional neural network based structured prediction approach towards the retinal vessel segmentation. 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne, VIC, pp 248–251, 2017. https://doi.org/10.1109/ISBI.2017.7950512

  80. Jin Q, Meng Z, Pham TD et al: DUNet: A deformable network for retinal vessel segmentation. Knowl Based Syst 178:149-162, 2019. https://doi.org/10.1016/j.knosys.2019.04.025

    Article  Google Scholar 

  81. Soomro TA, Afifi AJ, Zheng L et al: Deep Learning Models for Retinal Blood Vessels Segmentation: A Review. IEEE Access 7:71696-71717, 2019. https://doi.org/10.1109/ACCESS.2019.2920616

    Article  Google Scholar 

  82. Yin Z, He W, Yang C: Tracking control of a marine surface vessel with full-state constraints. Int J Syst Sci 48(3):535-546, 2017. https://doi.org/10.1080/00207721.2016.1193255

    Article  Google Scholar 

  83. Jain A, Hong L, Pankanti S: Biometric identification. Commun ACM 43(2):90-98, 2000. https://doi.org/10.1145/328236.328110

    Article  Google Scholar 

  84. Wang Y, Ji G, Lin P, Trucco E: Retinal vessel segmentation using multiwavelet kernels and multiscale hierarchical decomposition. Pattern Recognit 46(8):2117-2133, 2013. https://doi.org/10.1016/j.patcog.2012.12.014

    Article  Google Scholar 

  85. Li Q, You J, Zhang D: Vessel segmentation and width estimation in retinal images using multiscale production of matched filter responses. Expert Syst Appl 39(9):7600-7610, 2012. https://doi.org/10.1016/j.eswa.2011.12.046

    Article  Google Scholar 

  86. Kumar D, Pramanik A, Kar SS et al: Retinal blood vessel segmentation using matched filter and Laplacian of Gaussian. 2016 International Conference on Signal Processing and Communications (SPCOM), IEEE, 2016. https://doi.org/10.1109/SPCOM.2016.7746666

  87. Gao X, Cai Y, Qiu C, Cui Y (2017) Retinal blood vessel segmentation based on the Gaussian matched filter and U-net. 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), IEEE. https://doi.org/10.1109/CISP-BMEI.2017.8302199

    Article  Google Scholar 

  88. Sreejini KS, Govindan VK: Improved multiscale matched filter for retina vessel segmentation using PSO algorithm. Egypt Inform J 16(3):253-260, 2015. https://doi.org/10.1016/j.eij.2015.06.004

    Article  Google Scholar 

  89. Singh NP, Srivastava R: Retinal blood vessels segmentation by using Gumbel probability distribution function based matched filter. Comput Methods Programs Biomed 129:40-50, 2016. https://doi.org/10.1016/j.cmpb.2016.03.001

    Article  PubMed  Google Scholar 

  90. Moghimirad E, Rezatofighi SH, Soltanian-Zadeh H: Retinal vessel segmentation using a multi-scale medialness function. Comput Biol Med 42(1):50-60, 2012. https://doi.org/10.1016/j.compbiomed.2011.10.008

    Article  PubMed  Google Scholar 

  91. Hu K, Zhang Z, Niu X, Zhang Y, Cao C, Xiao F, Gao X: Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function. Neurocomputing 309:179-191, 2018. https://doi.org/10.1016/j.neucom.2018.05.011

    Article  Google Scholar 

  92. Zhang L, Fisher M, Wang W: Retinal vessel segmentation using multi-scale textons derived from keypoints. Comput Med Imaging Graph 45:47-56, 2015. https://doi.org/10.1016/j.compmedimag.2015.07.006

    Article  CAS  PubMed  Google Scholar 

  93. Nguyen UTV, Bhuiyan A, Park LAF et al: An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern Recognit 46(3):703-715, 2013. https://doi.org/10.1016/j.patcog.2012.08.009

    Article  Google Scholar 

  94. Khan MAU, Khan TM, Bailey DG, Soomro TA: A generalized multi-scale line-detection method to boost retinal vessel segmentation sensitivity. Pattern Anal Appl 22(3):1177-1196, 2019. https://doi.org/10.1007/s10044-018-0696-1

    Article  Google Scholar 

  95. Zaki SKM, Zulkifley MA, Nazari A: Tracing of retinal blood vessels through edge information. 2014 IEEE International Conference on Control System, Computing and Engineering (ICCSCE 2014), Batu Ferringhi, pp 13–17, 2014. https://doi.org/10.1109/ICCSCE.2014.7072681

  96. Li Q, You J, Wang J, Wong A: A fully automated system for retinal vessel tortuosity diagnosis using scale dependent vessel tracing and grading. 2010 IEEE 23rd International Symposium on Computer-Based Medical Systems (CBMS), Perth, WA, pp 221–225, 2010. https://doi.org/10.1109/CBMS.2010.6042645

  97. Zhang J, Li H, Nie Q, Cheng L: A retinal vessel boundary tracking method based on Bayesian theory and multi-scale line detection. Comput Med Imaging Graph 38(6):517-525, 2014. https://doi.org/10.1016/j.compmedimag.2014.05.010

    Article  PubMed  Google Scholar 

  98. Hassan G, El-Bendary N, Hassanien AE et al: Retinal blood vessel segmentation approach based on mathematical morphology. Procedia Comput Sci 65:612-622, 2015. https://doi.org/10.1016/j.procs.2015.09.005

    Article  Google Scholar 

  99. Zana F, Klein JC: Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Trans Image Process 10(7):1010-1019, 2001. https://doi.org/10.1109/83.931095

    Article  CAS  PubMed  Google Scholar 

  100. Leandro JJG, Cesar J, Jelinek HF: Blood vessels segmentation in retina: preliminary assessment of the mathematical morphology and of the wavelet transform techniques. Proceedings XIV Brazilian Symposium on Computer Graphics and Image Processing, Florianopolis, Brazil, pp 84–90, 2001. https://doi.org/10.1109/SIBGRAPI.2001.963041

  101. Rodrigues LC, Marengoni M: Segmentation of optic disc and blood vessels in retinal images using wavelets, mathematical morphology and Hessian-based multi-scale filtering. Biomed Signal Process Control 36:39-49, 2017. https://doi.org/10.1016/j.bspc.2017.03.014

    Article  Google Scholar 

  102. Akram MU, Khan SA: Multilayered thresholding-based blood vessel segmentation for screening of diabetic retinopathy. Eng Comput 29(2):165-173, 2013. https://doi.org/10.1007/s00366-011-0253-7

    Article  Google Scholar 

  103. Jiang X, Mojon D: Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images. IEEE Trans Pattern Anal Mach Intell 25(1):131-137, 2003. https://doi.org/10.1109/TPAMI.2003.1159954

    Article  Google Scholar 

  104. Dash J, Bhoi N: Retinal blood vessel segmentation using Otsu thresholding with principal component analysis. 2018 2nd International Conference on Inventive Systems and Control (ICISC), Coimbatore, pp 933–937, 2018. https://doi.org/10.1109/ICISC.2018.8398938

  105. Maninis KK, Pont-Tuset J, Arbeláez P, Van Gool L: Deep retinal image understanding. In: Ourselin S, Joskowicz L, Sabuncu M, Unal G, Wells W (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. MICCAI 2016. Lecture Notes in Computer Science, vol 9901. Springer, Cham, 2016. https://doi.org/10.1007/978-3-319-46723-8_17

  106. Singh S, Tiwari RK: A Review on Retinal Vessel Segmentation and Classification Methods. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), IEEE, 2019. https://doi.org/10.1109/ICOEI.2019.8862555

  107. Yao Z, Zhang Z, Xu LQ: Convolutional Neural Network for Retinal Blood Vessel Segmentation. 2016 9th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, pp 406–409, 2016. https://doi.org/10.1109/ISCID.2016.1100

  108. Nazir T, Irtaza A, Javed A, Malik H, Hussain D, Naqvi RA: Retinal image analysis for diabetes-based eye disease detection using deep learning. Appl Sci 10(18):6185, 2020. https://doi.org/10.3390/app10186185

    Article  CAS  Google Scholar 

  109. Badar M, Haris M, Fatima A: Application of deep learning for retinal image analysis: A review. Comput Sci Rev 35:100203, 2020. https://doi.org/10.1016/j.cosrev.2019.100203

    Article  Google Scholar 

  110. Upadhyay K, Agrawal M, Vashist P: Unsupervised multiscale retinal blood vessel segmentation using fundus images. IET Image Process 14(11):2616-2625, 2020. https://doi.org/10.1049/iet-ipr.2019.0969

    Article  Google Scholar 

  111. Speedy DB, Rogers IR, Noakes TD et al: Diagnosis and prevention of hyponatremia at an ultradistance triathlon. Clin J Sport Med 10(1):52-58, 2000.

    Article  CAS  Google Scholar 

  112. Castaneda C, Nalley K, Mannion C et al: Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine. J Clin Bioinform 5:4, 2015. https://doi.org/10.1186/s13336-015-0019-3

    Article  Google Scholar 

  113. Kaur J, Mittal D: A generalized method for the detection of vascular structure in pathological retinal images. Biocybern Biomed Eng 37(1):184-200, 2017. https://doi.org/10.1016/j.bbe.2016.09.002

    Article  Google Scholar 

  114. Ravishankar S, Jain A, Mittal A: Automated feature extraction for early detection of diabetic retinopathy in fundus images. 2009 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2009. https://doi.org/10.1109/CVPR.2009.5206763

  115. Perez L, Wang J: The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:1712.04621, 2017.

  116. Samarabandu J, Acharya R, Hausmann E et al: Analysis of bone X-rays using morphological fractals. IEEE Trans Med Imaging 12(3):466-470, 1993. https://doi.org/10.1109/42.241873

    Article  CAS  PubMed  Google Scholar 

  117. Sekhar S, Al-Nuaimy W, Nandi AK: Automated localisation of optic disk and fovea in retinal fundus images. 2008 16th European Signal Processing Conference, IEEE, 2008.

  118. Fraz MM, Remagnino P, Hoppe A et al: An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans Biomed Eng 59(9):2538-2548, 2012. https://doi.org/10.1109/TBME.2012.2205687

    Article  PubMed  Google Scholar 

  119. Sela I, Ashkenazy H, Katoh K, Pupko T: GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Res 43(W1):W7-W14, 2015. https://doi.org/10.1093/nar/gkv318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Das V, Dandapat S, Bora PK: A novel diagnostic information based framework for super-resolution of retinal fundus images. Comput Med Imaging Graph 72:22-33, 2019. https://doi.org/10.1016/j.compmedimag.2019.01.002

    Article  PubMed  Google Scholar 

  121. Imran A, Li J, Pei Y, Yang JJ, Wang Q: Comparative analysis of vessel segmentation techniques in retinal images. IEEE Access 7:114862-114887, 2019. https://doi.org/10.1109/ACCESS.2019.2935912

    Article  Google Scholar 

  122. Franklin SW, Rajan SE: Computerized screening of diabetic retinopathy employing blood vessel segmentation in retinal images. Biocybern Biomed Eng 34(2):117-124, 2014. https://doi.org/10.1016/j.bbe.2014.01.004

    Article  Google Scholar 

  123. Mary VS, Rajsingh EB, Naik GR: Retinal fundus image analysis for diagnosis of glaucoma: a comprehensive survey. IEEE Access, 2016. http://hdl.handle.net/10453/122945

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nihar Ranjan Panda.

Ethics declarations

Ethics Approval

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Informed Consent

For this type of study, formal consent is not required.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, N.R., Sahoo, A.K. A Detailed Systematic Review on Retinal Image Segmentation Methods. J Digit Imaging 35, 1250–1270 (2022). https://doi.org/10.1007/s10278-022-00640-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-022-00640-9

Keywords

Navigation